
Intro to Client
GraphQL with
React

Scott Moss
Frontend Masters

GraphQL, the big
picture

What is GraphQL?

A spec that describes a declarative query language that your

clients can use to ask an API for the exact data they want. This

is achieved by creating a strongly typed Schema for your API,

ultimate flexibility in how your API can resolve data, and client

queries validated against your Schema.

It’s just a spec. There are
several implementations
and variations

https://graphql.github.io/graphql-spec/

Server Side

● Type Definitions

● Resolvers

● Query Definitions

● Mutation Definitions

● Composition

● Schema

Client Side

● Queries

● Mutations

● Fragments

Where does GraphQL fit in?

● A GraphQL server with a connected DB (most greenfields)

● A GraphQL server as a layer in front of many 3rd party

services and connects them all with one GraphQL API

● A hybrid approach where a GraphQL server has a

connected DB and also communicates with 3rd party

services

Queries and Mutations
from the client

Operation names

Unique names for your client side Query and Mutation

operations. Used for client side caching, indexing inside of

tools like GraphQL playground, etc. Like naming your

functions in JS vs keeping them anonymous.

Variables with operations

Operations can define arguments, very much like a function in

most programming languages. Those variables can then be

passed to query / mutation calls inside the operation as

arguments. Variables are expected to be given at run time

during operation execution from your client.

Apollo Client

What is Apollo Client

Encapsulates HTTP logic used to interact with a GraphQL API.

Doubles as a client side state management alternative as well.

If your GraphQL API is also an Apollo Server, provides some

extra features. Offers a plug approach for extending its

capabilities. It’s also framework independent.

Storing data from your API

● All nodes are stored flat by an unique ID

● Unique ID is defaulted to .id or ._id from nodes. You can

change this

● Every node should send an .id or ._id, or none at all. Or you

have to customize that logic

Queries in React

Mutations in React

Keeping Cache in Sync

Why is the cache out of sync?

If you perform a mutation that updates or creates a single

node, then apollo will update your cache automatically given

the mutation and query has the same fields and id.

If you perform a mutation that updates a node in a list or
removes a node, you are responsible for updating any queries
referencing that list or node. There are many ways to do this
with apollo.

Keeping cache in sync

● Refetch matching queries after a mutation

● Use update method on mutation

● Watch Queries

Optimistic UI

What is a Optimistic UI?

Your UI does not wait until after a mutation operation to

update itself. Instead, it anticipates the response from the API

and proceeds as if the API call was sync. The the API response

replaces the generated one. This gives the illusion of your

being really fast.

Optimistic UI with mutations

Apollo provides a simple hook that allows you to write to the

local cache after a mutation.

Client Side Schemas

Why?

In addition to managing data from your API, apollo client can

also local state originated from your front end app. Stuff you

would normally store in something like Redux or Vuex. You

can create a schema to define that state which allows you to

query for that state the same way you query your API for data.

How?

The exact same way as the server. You just have to extend the

Types from your server schema. You then use a directive to

access local state from your queries and mutations.

You made it 💯

