
FROM THE OTHER SIDE
INTRO TO GO

(A LOVE STORY)

https://github.com/martensonbj/fem-intro-to-go

(Hi! Fire this GitHub repository up in your browser for reference 🤘)

https://github.com/martensonbj/fem-intro-to-go

01. MEET CUTE
THE SETUP

WHY GO AT F.E.M?

01. SETUP: WHY

ABOUT ME

01. SETUP: ABOUT ME

 @martenson_bj

Brenna Martenson

https://github.com/martensonbj/fem-intro-to-go

(gopherize.me)

(For real…you’re going to need this)

WHAT TODAY LOOKS LIKE

▸ Brief Introduction

▸ Installation

▸ Basic Syntax & Structure

▸ Build some Go apps

▸ Brief look at concurrency

01. SETUP: THE PLAN

SLIDES

01. SETUP: SLIDES

What information is available on the slides?

SLIDES

01. SETUP: SLIDES 01_folder/code/file.go

SECTION NUMBER + BREADCRUMBS FILES I AM REFERENCING

CURRENT SECTION TITLE

(green means something actionable!)

(the repo structure will match the section structure)

01_folder/file.md

(grey means lecture notes!)

HISTORY

01. SETUP: HISTORY

01. SETUP: HISTORY

BEFORE GO
It was 2007 It was Google It was C++

‣ 1. Fast compile times

‣ 2. Ease of development

‣ 3. Fast execution

Performance and scalability were hot topics
(Unsurprisingly, Google had become a large, difficult to maintain codebase)

01. SETUP: HISTORY

ENTER: GO

‣ Fast compile time

‣ Lots in common with C

‣ Reduces complexity of C

‣ Wicked fast build time

‣ Lightweight type system

‣ Concurrency

‣ Automatic garbage collection

‣ Strict dependencies

‣ Convention

INSTALLATION

01. SETUP: INSTALLATION

01. SETUP: THINGS YOU NEED

THINGS YOU NEED

▸ An IDE of some kind (I’ll be on VSCode)
▸ Option Two: Go Playground

▸ A Terminal Window

▸ Your Favorite Browser (I’ll be in Chrome)

01. SETUP: EXERCISE 0

INSTALLING GO

(5 MINUTES)

01_setup/exercise_0.md

Reminder: ^^ this file path lives here:
github.com/martensonbj/fem-intro-to-go)

EXERCISE #0

http://github.com/martensonbj/fem-intro-to-go

INSTALLING GO

▸ Install Go
▸ golang.org/dl

01. SETUP: INSTALLING GO 01_setup/exercise_0.md

01. SETUP: INSTALLING GO 01_setup/exercise_0.md

1. Verify Go was installed: 2. Add these to your .bash_profile:

3. Verify those updates:

4. Create a workspace
‣ Navigate to your $GOPATH (ie: /Users/brennamartenson)
‣ mkdir go && cd go
‣ mkdir src && cd src
‣ git clone https://github.com/martensonbj/fem-intro-to-go.git
‣ cd fem-intro-to-go && go run main.go

golang.com/dl

http://github.com/martensonbj/fem-intro-to-go

DOCUMENTATION

01. SETUP: DOCUMENTATION

01. SETUP: DOCUMENTATION

DOCUMENTATION & RESOURCES

golang.org

EXERCISE #1A

01. SETUP: EXERCISE 1A

FIND STUFF

(5 MINUTES)

01_setup/exercise_1a.md

02. FIRST DATES ARE
AWKWARD
LETS GET THE WEIRD PARTS OUT OF THE WAY

▸ Strongly typed
▸ String, Float, Int, Byte,

Struct…

▸ Dynamically typed
▸ Variables can change
▸ Typescript

TYPING

02. INTRODUCTION: THE WEIRD PARTS

▸ Structs, Pointers, Methods,
Interfaces
▸ Define behavior and

attributes

▸ ES6 Classes (kind of)
▸ Define behavior and

attributes

STRUCTURES

02. INTRODUCTION: THE WEIRD PARTS

▸ Explicit
▸ Sad path won’t handle

itself

▸ Built in
▸ You'll get yelled at

regardless

ERROR HANDLING

02. INTRODUCTION: THE WEIRD PARTS

▸ Multi-Threaded
▸ Concurrency,

Goroutines, Sync

▸ Single-Threaded
▸ Callbacks, async await,

sagas, sadness

MULTI-TASKING

02. INTRODUCTION: THE WEIRD PARTS

02. INTRODUCTION: THE WEIRD PARTS

▸ Strong Opinions
▸ Convention, built in

tooling and linters

▸ Fluid Opinions
▸ Subjective to the mood

that day

OPINIONATED-NESS

ANATOMY

02. INTRODUCTION: ANATOMY

(OF A FILE)

02_introduction/anatomy.md

02. INTRODUCTION: ANATOMY 02_introduction/anatomy.md

(pronounced “fumpt” 🙄)

PRINTING

02. INTRODUCTION: PRINTING 02_introduction/printing.md

fmt.Println()

02. INTRODUCTION: PRINTING

PLAY.GOLANG.ORG

02_introduction/printing.md

Goal: Experiment with printing

http://play.golang.org

02. INTRODUCTION: PRINTING 02_introduction/printing.md

fmt.Print()

fmt.Fprint()

fmt.Sprint()

fmt.Println()
fmt.Printf()

fmt.Fprintln()
fmt.Fprintf()

fmt.Sprintln()
fmt.Sprintf()

Print

Fprint

Sprint

- Prints the output to an external source (file, browser)
- Does not print to the stdout console
- Returns number of bytes, and any write errors

- Stores output on a character buffer
- Does not print to stdout console
- Returns the string you want to print

- Prints output to the stdout console
- Returns number of bytes and an error
- (The error is generally not worried about

EXERCISE #2A

02. INTRODUCTION: EXERCISE 2A

HELLO WORLD+

02_introduction/exercise_2a.md

(5 MINUTES)

03. LETS TALK
BASIC SYNTAX

03. BASIC SYNTAX

TYPES

03. BASIC SYNTAX: TYPES 03_basic_syntax/types.md

03. BASIC SYNTAX: TYPES

Name Type Name Examples

INTEGER 1 2 44 770int int8 int16 int32 int64
uint uint8 uint26 uint32 uint64 var age int = 21

FLOAT 1.5 3.14 2100
float32 float64

var gpa float64 = 4.0

STRING “Pancakes”
var plant string = “ficus”

string

BOOLEAN
true falsebool

&& || ! < <= >= == != var canDrink bool = age > 21

03_basic_syntax/types.md

PLAY.GOLANG.ORG

03. BASIC SYNTAX: TYPES

‣ Identify the type of a variable

‣ Convert types

03_basic_syntax/types.md

http://play.golang.org

VARIABLES

03. BASIC SYNTAX: VARIABLES 03_basic_syntax/variables.md

03_BASIC_SYNTAX/CODE/VARIABLES.GO

03. BASIC SYNTAX: VARIABLES

PLAY.GOLANG.ORG

I’ll be here:

But if you want, you can go here:

03_basic_syntax/variables.md

http://play.golang.org

CONTROL
STRUCTURES

03. BASIC SYNTAX: CONTROL STRUCTURES 03_basic_syntax/ctrl_structures.md

‣ If statements

‣ For loops

‣ Switch statements

03. BASIC SYNTAX: CONTROL STRUCTURES/IF 03_basic_syntax/ctrl_structures.md

03_BASIC_SYNTAX/CODE/IFS.GO

IF STATEMENTS

03. BASIC SYNTAX: CONTROL STRUCTURES

03_BASIC_SYNTAX/CODE/SWITCH.GO

SWITCH STATEMENTS

03_basic_syntax/ctrl_structures.md

03. BASIC SYNTAX: CONTROL STRUCTURES

03_BASIC_SYNTAX/CODE/FOR.GO

FOR LOOPS

03_basic_syntax/ctrl_structures.md

EXERCISE #3A

03: BASIC SYNTAX: EXERCISE 3A

CONTROL STRUCTURES

03_basic_syntax/exercise_3a.md

(7 MINUTES)

04. OK BUT I WANT TO
KNOW MORE ABOUT YOU

04. COMPLEX STRUCTURES

MORE COMPLEX STRUCTURES

FUNCTIONS

04. COMPLEX STRUCTURES: FUNCTIONS 04_complex_structures/functions.md

04. COMPLEX STRUCTURES: FUNCTIONS

04_COMPLEX_STRUCTURES/CODE/FUNCTIONS.GO

FUNCTIONS

04_complex_structures/functions.md

EXERCISE #4A
FUNCTIONS

(5 MINUTES)

04. COMPLEX STRUCTURES: FUNCTIONS 04_complex_structures/exercise_4a.md

04. COMPLEX STRUCTURES: FUNCTIONS

VARIADIC FUNCTION

04_complex_structures/functions.md

EXERCISE #4B
VARIADIC FUNCTIONS

(5 MINUTES)

04. COMPLEX STRUCTURES: FUNCTIONS 04_complex_structures/exercise_4b.md

ARRAYS

04. COMPLEX STRUCTURES: ARRAYS 04_complex_structures/arrays.md

04. COMPLEX STRUCTURES: ARRAYS 04_complex_structures/arrays.md

ARRAYS

NOTE: Length is part of the type definition.
[5]float64 != [6]float64

04. COMPLEX STRUCTURES: ARRAYS 04_complex_structures/arrays.md

ARRAYS

> _TRY IT_

> Copy line 9 from this example into the Go playground

> Print out the variable `scores` as is.

> What do you see?

04. COMPLEX STRUCTURES: ARRAYS 04_complex_structures/arrays.md

ARRAYS: DEFINING VALUES

> Try It

> Using range, iterate over the array of
 scores printing each value

> What error do you get?

04. COMPLEX STRUCTURES: ARRAYS 04_complex_structures/arrays.md

ARRAYS: DEFINING VALUES

Needing to know the exact length of an array every time you need one seems problematic.

ENTER: THE SLICE

SLICES (+ MAKE)

04. COMPLEX STRUCTURES: SLICES 04_complex_structures/slices.md

Segments of an underlying array Must be associated with space in memory

04. COMPLEX STRUCTURES: SLICES

04_complex_structures/code/slices.go

MAKE
According to the docs:

Make "Initializes and allocates space in memory for a slice, map, or channel.”

> Try It

> Print the results of each of these variables
 in your go program (or the go playground).

> What happens?

04_complex_structures/slices.md

SLICES

04. COMPLEX STRUCTURES: SLICES

fruitArray := [5]string{"banana", "pear", "apple", "kumquat", “peach"}

var splicedFruit []string = fruitArray[1:3] // ==> [“pear”, “apple”]

banana pear apple kumquat peach

pointer

length

capacity fruitArray

splicedFruit

0 1 2 3 4

length = 2

capacity = 4

04_complex_structures/slices.md

SLICES

04. COMPLEX STRUCTURES: SLICES 04_complex_structures/slices.md

04_COMPLEX_STRUCTURES/CODE/SLICES.GO

‣ Modifying the length of a slice

‣ Append

‣ Copy

MAPS

04. COMPLEX STRUCTURES: MAPS

04. COMPLEX STRUCTURES: MAPS 04_complex_structures/maps.md

MAPS

> _TRY IT_

> Add this code into a go file or playground

> Add a third email and run the program

> What happens? What are we missing?

EXERCISE #4C
COMPLEX STRUCTURES: SUMMARY

04. COMPLEX STRUCTURES: EXERCISE 4 04_complex_structures/exercise_4c.md

(7 MINUTES)

05. SO WHERE ARE
YOU FROM?
THE GO TOOLKIT & PACKAGES

05. TOOLKIT

GO TOOLS &
COMMANDS

05. TOOLKIT: GO TOOLS 05_toolkit/tools.md

GO TOOLS & COMMANDS
05. TOOLKIT: GO TOOLS

go run main.go

go build

go install

go fmt main.go

go list

go vet

go doc fmt.Println

go get golang.org/x/lint/golint

golint

05_toolkit/code/tools.go

PACKAGES

05. TOOLKIT: PACKAGES 05_toolkit/packages.md

import (
 "fmt"
 "math"
 "reflect"
)

package main

PACKAGES
05. TOOLKIT: PACKAGES 05_toolkit/code/packages.go

05_TOOLKIT/CODE/PACKAGES.GO

‣ Go packages

‣ Package visibility

‣ Custom packages

UNIT TESTING
(JUST A CASUAL GLANCE)

05. TOOLKIT: UNIT TESTING

UNIT TESTING
05. TOOLKIT: UNIT TESTING 05_toolkit/testing.md

average_test.go
average.go

go test

EXERCISE #5A
TEST THE ADD METHOD

05. TOOLKIT: UNIT TESTING

(5 MINUTES)

05_testing/exercise_5a.md

06. WHAT DEFINES YOU?

06. STRUCTS

STRUCTS

STRUCTS
05. STRUCTS: DEFINING 06_structs/structs.md

06_structs/code/structs.go

EXERCISE #6A

06 STRUCTS: EXERCISE 6A

WORK WITH STRUCTS

06_structs/exercise_6a.md

(5 MINUTES)

07. LET ME CHANGE YOU

07. POINTERS

POINTERS & REFERENCES

POINTERS

07. POINTERS

POINTERS

07_pointers/pointers.md07. POINTERS

A pointer in Go is a variable that holds the memory location of that
variable instead of a copy of its value.

*

POINTERS

07_POINTERS/POINTERS.GO

07. POINTERS

> _TRY IT_

> Set both `name` and `namePointer` to string values.

> What happens?

> What does the error message mean?

07_pointers/pointers.md

Modifying Pointers

POINTERS: SUMMARY

07. POINTERS

‣ Pointer type definitions are indicated with a * next to the type name
‣ Indicate that the variable will point to a memory location.

‣ Pointer variable values are visible with a * next to the variable name

‣ To read through a variable to see the pointer address
 use a & next to the pointer variable name

07_pointers/pointers.md

var namePointer *string

var nameValue = *namePointer

var nameAddress = &namePointer

POINTERS

07_POINTERS/POINTERS.GO

07. POINTERS 07_pointers/pointers.md

‣ Pass by value

‣ Pointers & functions

‣ Pointers & structs

EXERCISE #7A
PRACTICE POINTERS

07. EXERCISE 7A: POINTERS 07_pointers/exercise_7a.md

(5 MINUTES)

08. YOU F***** UP
ERROR HANDLING

ERROR HANDLING

08. ERROR HANDLING

ERROR

PANIC
- happens at run time
- something happened that was fatal to your program and program

stops execution
- ex: Trying to open a file that doesn’t exist

- indicates that something bad happened, but it might be possible to
continue running the program.

- ie: A function that intentionally returns an error if something goes
wrong

08_errors/errors.md

ERROR

08. ERROR HANDLING

type error interface {
 Error() string
}

08_ERRORS/CODE/ERRORS.GO

err := someFuncThatReturnsAnError()

fmt.Println(err.Error())

08_errors/errors.md

PANIC & DEFER

08. ERROR HANDLING

08_ERRORS/CODE/ERRORS.GO

f, err := os.Open(filename)
defer f.Close()

panic(err.Error())

08_errors/errors.md

RECOVER

08. ERROR HANDLING

08_ERRORS/CODE/ERRORS.GO

‣ Panic is called during a run time error and fatally kill the program

‣ Recover tells Go what to do when that happens
‣ Returns what was passed to panic.

‣ Recover must be paired with defer, which will fire even after a panic

09. METHODS
STATEFUL FUNCTIONS

METHODS

08. METHODS 09_methods/methods.md

09_METHODS.CODE/METHODS.GO

*

EXERCISE #9A

09. METHODS: EXERCISE 9A

PRACTICE METHODS

09_methods/exercise_9a.md

(5 MINUTES)

10. INTERFACES
A SET OF BEHAVIORS THAT DEFINE A TYPE

INTERFACES

10. INTERFACES 10_interfaces/interfaces.md

type Worrier interface {
 CallFrequently([]Kid)
 CheckIfOvenIsOff()
}

"If it walks like a duck, swims like a duck and quacks like a duck, then it’s a duck.”

type Mom struct {
 FirstName: string
 LastName: string
 Kids: []Kid
 BookClubFriends: []Friend
}

type Dad struct {
 FirstName: string
 LastName: string
 Kids: []Kid
 GolfFriends: []Friend
}

var susan = Mom{…}
var bob = Dad{…}

func (m Mom) CallFrequently(kids []Kid)
 fmt.Println(“Did you take your vitamins”)
}

func (d Dad) CallFrequently(kids []Kid) {
 fmt.Println(“Clean your room”)
}

func (m Mom) CheckIfOvenIsOff() bool {}

func (d Dad) CheckIfOvenIsOff() bool {}

susan is both type Mom and type Worrier
bob is both type Dad and type Worrier

INTERFACES

10. INTERFACES 10_interfaces/interfaces.md

Interfaces describe the kind of behavior our types can execute.

10_INTERFACES/CODE/INTERFACES.GO

THE EMPTY INTERFACE

10. INTERFACES 10_interfaces/interfaces.md

‣ Specifies zero methods

‣ An empty interface may hold values of any type
‣ These can be used by code that expects an unknown type

‣ Allows you to call methods and functions on types when you aren’t
 entirely sure what will be expected

‣ Think the any type in Typescript

interface{}

THE EMPTY INTERFACE

10. INTERFACES 10_interfaces/interfaces.md

interface{}

var people map[string]interface{}

people = map[string]interface{
 “user”: User,
 “admin”: Admin,
 “parent”: Parent,
}

type User struct {}

type Admin struct {}

type Parent struct{}

11. WEB SERVERS
BUILDING A TODO LIST

ROUTES

11. WEB SERVER: ROUTES

“net/http”

func main() {
 http.HandleFunc("/", home)
}

11_ROUTES/CODE/ROUTES.GO

11_server/server.md

EXERCISE #11A

11. WEB SERVER

BROWSER TODO LIST

11_server/code/server.go

A CODE-ALONG

(20 MINUTES)

12. FETCHING DATA
EXTERNAL API

EXERCISE #12

12. API: EXERCISE 12

API ADVENTURES IN A GALAXY FAR FAR AWAY

(20 MINUTES)

A CODE-ALONG

swapi.dev

13. MULTITASKING

13. CONCURRENCY

CONCURRENCY

13_concurrency/concurrency.md

GOROUTINES

▸ A Goroutine is a lightweight thread managed by the Go runtime

▸ Implemented by adding the go keyword before executing a function

13. CONCURRENCY 13_concurrency/concurrency.md

‣ Tells go to spin up a new thread to do that thing

EXERCISE #13

13. CONCURRENCY: EXERCISE 13

ADDING CONCURRENCY TO AN APP

13_concurrency/code/concurrency.go

(10 MINUTES)

A CODE-ALONG

ERROR WRAPPING

14. FUTURE OF GO: ERRORS

An error “e” can wrap another error “w" by providing an
Unwrap method that returns w. Both e and w are available to
programs, allowing e to provide additional context to w or to
reinterpret it while still allowing programs to make decisions
based on w.

14. WE SHOULD DO
THIS AGAIN SOMETIME
CONCLUSION

14. CONCLUSION: RESOURCES

RESOURCES

‣ - [Offical Golang Docs]
‣ (https://golang.org/doc/)

‣ - [How To Use Interfaces In Go]
‣ (https://jordanorelli.com/post/32665860244/how-to-use-interfaces-in-go)

‣ - [Introducing Go]
‣ (http://shop.oreilly.com/product/0636920046516.do), Caleb Doxsey, O'Reilly

Publications
‣ - [Web Applications With Go]
‣ (https://blog.scottlogic.com/2017/02/28/building-a-web-app-with-go.html)

‣ - [Go Language Programming Practical Basic Tutorial]
‣ (https://www.youtube.com/playlist?list=PLQVvvaa0QuDeF3hP0wQoSxpkqgRcgxMqX)
‣ - [Star Wars API]
‣ (https://swapi.co/)

‣ - My colleague Justin Holmes, and former colleagues Mike McCrary and Steven Bogacz
for their patience with my endless questions.

CONCLUSION: CONTACT ME

CONTACT ME

▸ Github: github.com/martensonbj

▸ Twitter: @martenson_bj

▸ Work: brenna.martenson@highwing.io

▸ LinkedIn: linkedin/martensonbj

