
JavaScript principles, Callbacks & Higher Order functions, Closure, 

Classes/Prototypes & Asynchronicity 

JavaScript the Hard Parts



2

Academic Work: 

Oxford University, 

Harvard University

Previously

Cocreator & Engineer: Icecomm

Software Engineer: Gem

Will Sentance

Currently

CEO, Cofounder: Codesmith

Speaker: Frontend Masters, BBC



3

Graduates
Per year from Codesmith LA and 

Codesmith NY

Hired within 180 days
Excludes ineligible to work in the US, health 

issues or no response to 6 contacts (full report 

at codesmith.io for details)

Median starting salary
$112k in NY, $106k in LA
(Third-party audited for CIRR;  Jan-June 2018 reporting period)

Github stars
Projects by Codesmith students have 

achieved global acclaim

92%

200+

50,000+

$110k

What is Codesmith?

12 week full-time software engineering immersive 

program in Los Angeles & New York

Our mission is to create the next generation of leaders 

in technology who care about impact and substance



4

JavaScript and programming 

experience

Non-technical 

communication

Engineering 

approach

Technical 

communication

Analytical problem 

solving

What to focus 
on in the 

workshop



5

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Contents



6

When JavaScript code runs, it:

JavaScript principles

const num = 3;

function multiplyBy2 (inputNumber){

 const result = inputNumber*2;

 return result;

}

const output = multiplyBy2(num);

const newOutput = multiplyBy2(10);

Goes through the code 
line-by-line and runs/ ’executes’ 
each line - known as the thread 
of execution

Saves ‘data’ like strings and 
arrays so we can use that data 
later - in its memory

We can even save code 
(‘functions’)



7

Functions

Created to run the code of a 
function - has 2 parts (we’ve 
already seen them!)

- Thread of execution
- Memory

Execution context

Code we save (‘define’) functions & 
can use (call/invoke/execute/run) 
later with the function’s name & ( )

const num = 3;

function multiplyBy2 (inputNumber){

 const result = inputNumber*2;

 return result;

}

const output = multiplyBy2(num);

const newOutput = multiplyBy2(10);

(We’ll see another way of defining functions later)



8

- JavaScript keeps track of what 
function is currently running 
(where’s the thread of execution)

- Run a function - add to call stack

- Finish running the function - JS 
removes it from call stack

- Whatever is top of the call stack 
- that’s the function we’re 
currently running

Call stack
const num = 3;

function multiplyBy2 (inputNumber){

 const result = inputNumber*2;

 return result;

}

const output = multiplyBy2(num);

const newOutput = multiplyBy2(10);



9

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Contents



10

- One of the most misunderstood concepts in JavaScript

- Enables powerful pro-level functions like map, filter, reduce (a core aspect of 
functional programming)

- Makes our code more declarative and readable

- Forms the backbone of the Codesmith technical interview (and professional 
mid/senior level engineering interviews)

Callbacks & Higher Order Functions



11

Let’s see why…

Create a function 10 squared

- Takes no input

- Returns 10*10

What is the syntax (the exact code we type)?

Why do we even have functions?



12

tenSquared

function tenSquared() {

   return 10*10;

}

tenSquared() // 100

What about a 9 squared function?



13

nineSquared

function nineSquared() {

   return 9*9;

}

nineSquared() // 100

And an a 8 squared function? 125 squared?

What principle are we breaking?



14

nineSquared

function nineSquared() {

   return 9*9;

}

nineSquared() // 100

And an a 8 squared function? 125 squared?

What principle are we breaking? DRY (Don’t Repeat Yourself)



15

We can generalize the function to make it reusable

function squareNum(num){

    return num*num;

}

squareNum(10); // 100

squareNum(9); // 81

squareNum(8); // 64



16

‘Parameters’ (placeholders) mean we don’t need to decide what data to run our 

functionality on until we run the function 

- Then provide an actual value (‘argument’) when we run the function

Higher order functions follow this same principle. 

- We may not want to decide exactly what some of our functionality is until we 

run our function

Generalizing functions



17

The most effective way to 

grow as a software engineer Stackoverflower

Uses code snippets to fix 

bug without knowing how 

they work

- Tackle blocks with a partner

- Stay focused on the problem

- Refine technical communication

- Collaborate to solve problem

Researcher

Avoids blocks by reading 

everything they can find 

on their block/bugPair programming Pair programming



18

- I know what a variable is

- I've created a function before

- I've added a CSS style before

- I have implemented a sort algorithm (bubble, merge etc)

- I can add a method to an object’s prototype

- I understand the event loop in JavaScript

- I understand 'callback functions'

- I can implement filter

- I can handle collisions in a hash table

Pairing up

For each topic you know give yourself a point to get a total out of 

csbin.io/callbacks



19

Now suppose we have a function copyArrayAndMultiplyBy2

function copyArrayAndMultiplyBy2(array) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(array[i] * 2);

   }

   return output;

 }

const myArray = [1,2,3];

const result = copyArrayAndMultiplyBy2(myArray);



20

What if want to copy array and divide by 2?

function copyArrayAndDivideBy2(array) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(array[i] / 2);

   }

   return output;

 }

const myArray = [1,2,3];

const result = copyArrayAndDivideBy2(myArray);



21

Or add 3?

function copyArrayAndAdd3(array) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(array[i] + 3);

   }

   return output;

 }

const myArray = [1,2,3];

const result = copyArrayAndAdd3(myArray);

What principle are we 
breaking?



22

Or add 3?

function copyArrayAndAdd3(array) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(array[i] + 3);

   }

   return output;

 }

const myArray = [1,2,3];

const result = copyArrayAndAdd3(myArray);

What principle are we 
breaking?

DRY - Don’t Repeat Yourself



23

We could generalize our function - So we pass in our specific 
instruction only when we run copyArrayAndManipulate !

function copyArrayAndManipulate(array, instructions) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(instructions(array[i]));

   }

   return output;

}

function multiplyBy2(input) { return input * 2; }

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);



24

Functions in javascript = first class objects

They can co-exist with and can be treated like any other javascript object

1. Assigned to variables and properties of other objects

2. Passed as arguments into functions

3. Returned as values from functions

How was this possible?



25

Which is our Higher 
Order Function?

function copyArrayAndManipulate(array, instructions) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(instructions(array[i]));

   }

   return output;

}

function multiplyBy2(input) {return input * 2;}

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

Which is our 
Callback Function

The outer function that 

takes in a function is our 

higher-order function

The function we insert is 

our callback function



26

Takes in a function or passes out a function

Just a term to describe these functions - any function that does it we call that - but 

there's nothing different about them inherently

Higher-order functions



27

Declarative readable code: Map, filter, reduce - the most readable way to write 

code to work with data

Codesmith & pro interview prep: One of the most popular topics to test in 

interview both for Codesmith and mid/senior level job interviews

Asynchronous JavaScript: Callbacks are a core aspect of async JavaScript, and are 

under-the-hood of promises, async/await

Callbacks and Higher Order Functions simplify our code 
and keep it DRY



28

Introducing arrow functions - a shorthand way to save functions

const multiplyBy2 = (input) => input*2

const multiplyBy2 = input => input*2

const multiplyBy2 = (input) => { return input*2 }

function multiplyBy2(input) { return input * 2; }

const output = multiplyBy2(3) //6



29

Updating our callback function as an arrow function

function copyArrayAndManipulate(array, instructions) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(instructions(array[i]));

   }

   return output;

}

const multiplyBy2 = input => input*2

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);



30

We can even pass in multiplyBy2 directly without a name

function copyArrayAndManipulate(array, instructions) {

   const output = [];

   for (let i = 0; i < array.length; i++) {

     output.push(instructions(array[i]));

   }

   return output;

}

const multiplyBy2 = input => input*2

const result = copyArrayAndManipulate([1, 2, 3], input => input*2);

But it’s still just the code of a function being passed into copyArrayAndManipulate



31

- Improve immediate legibility of the code

- But at least for our purposes here they are ‘syntactic sugar’ - we’ll see their 

full effects later

- Understanding how they’re working under-the-hood is vital to avoid 

confusion

Anonymous and arrow functions



32

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Contents



33

Closure

- Closure is the most esoteric of JavaScript concepts

- Enables powerful pro-level functions like ‘once’ and ‘memoize’

- Many JavaScript design patterns including the module pattern use closure

- Build iterators, handle partial application and maintain state in an 
asynchronous world



34

function multiplyBy2 (inputNumber){

 const result = inputNumber*2;

 return result;

}

const output = multiplyBy2(7);

const newOutput = multiplyBy2(10);

Functions get a new memory every run/invocation



35

Functions with memories

- When our functions get called, we create a live store of data (local 
memory/variable environment/state) for that function’s execution context.

- When the function finishes executing, its local memory is deleted (except the 
returned value)

- But what if our functions could hold on to live data between executions? 

- This would let our function definitions have an associated cache/persistent 
memory

- But it all starts with us returning a function from another function



36

function createFunction() {

   function multiplyBy2 (num){

       return num*2;

   }

   return multiplyBy2;

}

const generatedFunc = createFunction();

const result = generatedFunc(3); // 6

Functions can be returned from other functions in 
JavaScript



37

csbin.io/closures

Pair 
programming 

challenges



38

function outer (){

   let counter = 0;

   function incrementCounter (){

       counter ++;

   }

   incrementCounter();

}

outer();

Calling a function in the same function call as it was 
defined

Where you define your 
functions determines 
what data it has access 
to when you call it



39

function outer (){

   let counter = 0;

   function incrementCounter (){ counter ++; }

   return incrementCounter;

}

const myNewFunction = outer();

myNewFunction();

myNewFunction();

Calling a function outside of the function call in 
which it was defined



40

When a function is defined, it gets a bond to the surrounding Local Memory 

(“Variable Environment”) in which it has been defined

The bond



41

- We return incrementCounter’s code (function definition) out of outer into 

global and give it a new name - myNewFunction

- We maintain the bond to outer’s live local memory - it gets ‘returned out’ 

attached on the back of incrementCounter’s function definition.

- So outer’s local memory is now stored attached to myNewFunction - even 

though outer’s execution context is long gone

- When we run myNewFunction in global, it will first look in its own local 

memory first (as we’d expect), but then in myNewFunction’s ‘backpack’

The ‘backpack’



42

What can we call this ‘backpack’?

- Closed over ‘Variable Environment’ (C.O.V.E.)

- Persistent Lexical Scope Referenced Data (P.L.S.R.D.)

- ‘Backpack’

- ‘Closure’

The ‘backpack’ (or ‘closure’) of live data is attached incrementCounter (then to 

myNewFunction) through a hidden property known as [[scope]] which persists 

when the inner function is returned out



43

function outer (){

   let counter = 0;

   function incrementCounter (){

       counter ++;

   }

   return incrementCounter;

}

Let’s run outer again

const myNewFunction = outer();

myNewFunction();

myNewFunction();

const anotherFunction = outer();

anotherFunction();

anotherFunction();



44

If we run 'outer' again and store the returned 'incrementCounter' function 

definition in 'anotherFunction', this new incrementCounter function was created in 

a new execution context and therefore has a brand new independent backpack

Individual backpacks



45

Helper functions: Everyday professional helper functions like ‘once’ and ‘memoize’

Iterators and generators: Which use lexical scoping and closure to achieve the 

most contemporary patterns for handling data in JavaScript

Module pattern: Preserve state for the life of an application without polluting the 

global namespace

Asynchronous JavaScript: Callbacks and Promises rely on closure to persist state 

in an asynchronous environment

Closure gives our functions persistent memories and 
entirely new toolkit for writing professional code



46

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Contents



47

- Promises - the most signficant ES6 feature

- Asynchronicity - the feature that makes dynamic web applications possible

- The event loop - JavaScript’s triage

- Microtask queue, Callback queue and Web Browser features (APIs)

Promises, Async & the Event Loop



48

A reminder of how JavaScript executes code

const num = 3;

function multiplyBy2 (inputNumber){

 const result = inputNumber*2;

 return result;

}

const output = multiplyBy2(num);

const newOutput = multiplyBy2(10);



49

JavaScript is: 

- Single threaded (one command runs at a time)
- Synchronously executed (each line is run in order the code appears)

So what if we have a task: 

- Accessing Twitter’s server to get new tweets that takes a long time
- Code we want to run using those tweets

Challenge: We want to wait for the tweets to be stored in tweets so that they’re there 
to run displayTweets on - but no code can run in the meantime

Asynchronicity is the backbone of modern web 
development in JavaScript yet...



50

Slow function blocks further code running

const tweets = getTweets("http://twitter.com/will/1") 

// ⛔350ms wait while a request is sent to Twitter HQ

displayTweets(tweets)

// more code to run

console.log("I want to runnnn!")



51

What if we try to delay a function directly using setTimeout?

function printHello(){

    console.log("Hello");

}

setTimeout(printHello,1000);

console.log("Me first!");

setTimeout is a built in function - its first argument is the function to delay followed by ms to delay by

In what order will our console logs appear?



52

So what about a delay of 0ms

function printHello(){

    console.log("Hello");

}

setTimeout(printHello,0);

console.log("Me first!");

Now, in what order will our console logs occur?



53

Our core JavaScript engine has 3 main parts:

- Thread of execution
- Memory/variable environment
- Call stack

We need to add some new components:

- Web Browser APIs/Node background APIs
- Promises
- Event loop, Callback/Task queue and micro task queue 

JavaScript is not enough - We need new pieces (some of 
which aren’t JavaScript at all)



54

ES5 solution: Introducing ‘callback functions’, and Web Browser 
APIs

function printHello(){ console.log("Hello"); }

setTimeout(printHello,1000);

console.log("Me first!");



55

We’re interacting with a world outside of JavaScript now - so 
we need rules

function printHello(){ console.log("Hello"); }

function blockFor1Sec(){ //blocks in the JavaScript thread for 

1 sec }

setTimeout(printHello,0);

blockFor1Sec()

console.log("Me first!");



56

Problems

- Our response data is only available in the callback function - Callback hell

- Maybe it feels a little odd to think of passing a function into another function only for it 
to run much later

Benefits

- Super explicit once you understand how it works under-the-hood

ES5 Web Browser APIs with callback functions



57

csbin.io/async

Pair 
programming 

challenges



58

Using two-pronged ‘facade’ functions that both: 

- Initiate background web browser work and

- Return a placeholder object (promise) immediately in JavaScript

ES6+ Solution (Promises)



59

ES6+ Promises

function display(data){

    console.log(data)

}

const futureData = fetch('https://twitter.com/will/tweets/1')

futureData.then(display); 

    

console.log("Me first!");



60

Special objects  built into JavaScript  that get returned immediately when we make 

a call to a web browser API/feature (e.g. fetch) that’s set up to return promises 

(not all are)

Promises act as a placeholder for the data we expect to get back from the web 

browser feature’s background work

ES6+ Solution (Promises)



61

Any code we want to run on the returned data must also be saved on the promise 

object

Added using .then method to the hidden property ‘onFulfilment’

Promise objects will automatically trigger the attached function to run (with its 

input being the returned data 

then method and functionality to call on completion



62

But we need to know how our promise-deferred functionality 
gets back into JavaScript to be run

function display(data){console.log(data)}

function printHello(){console.log("Hello");}

function blockFor300ms(){/* blocks js thread for 300ms }

setTimeout(printHello, 0);

const futureData = fetch('https://twitter.com/will/tweets/1')

futureData.then(display)

blockFor300ms()

console.log("Me first!");



63

Problems

- 99% of developers have no idea how they’re working under the hood

- Debugging becomes super-hard as a result

- Developers fail technical interviews

Benefits

- Cleaner readable style with pseudo-synchronous style code

- Nice error handling process

Promises



64

We have rules for the execution of our asynchronously 
delayed code

Hold promise-deferred functions in a microtask queue and callback function in a 

task queue (Callback queue) when the Web Browser Feature (API) finishes

Add the function to the Call stack (i.e. run the function) when: 

- Call stack is empty & all global code run (Have the Event Loop check this 

condition)

Prioritize functions in the microtask queue over the Callback queue



65

Non-blocking applications: This means we don’t have to wait in the single thread 

and don’t block further code from running

However long it takes: We cannot predict when our Browser feature’s work will 

finish so we let JS handle automatically running the function on its completion

Web applications: Asynchronous JavaScript is the backbone of the modern web - 

letting us build fast ‘non-blocking’ applications

Promises, Web APIs, the Callback & Microtask Queues 
and Event loop enable:



66

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Contents



67

- An enormously popular paradigm for structuring our complex code

- Prototype chain - the feature behind-the-scenes that enables emulation of 
OOP but is a compelling tool in itself

- Understanding the difference between __proto__ and prototype

- The new and class keywords as tools to automate our object & method 
creation

Classes, Prototypes - Object Oriented JavaScript



68

1. Save data (e.g. in a quiz game the scores of user1 and user2)
2. Run code (functions) using that data (e.g. increase user 2’s score)

Easy! So why is development hard?

In a quiz game I need to save lots of users, but also admins, quiz questions, quiz 
outcomes, league tables - all have data and associated functionality 

In 100,000 lines of code

- Where is the functionality when I need it? 
- How do I make sure the functionality is only used on the right data!

Core of development (and running code)



69

1. Easy to reason about

But also

2. Easy to add features to (new functionality)

3. Nevertheless efficient and performant 

The Object-oriented paradigm aims is to let us achieve these three goals

That is, I want my code to be:



70

So if I’m storing each user in my app with their 
respective data (let’s simplify) 

user2: 
- name: ‘Stephanie’
- score: 5

And the functionality I need to have for each user (again simplifying!)

- increment functionality (there’d be a ton of functions in practice)

How could I store my data and functionality together in one place?

user1: 
- name: ‘Tim’
- score: 3



71

Objects - store functions with their associated data!

const user1 = {

  name: "Will",

  score: 3,

  increment: function() { user1.score++; }

};

user1.increment(); //user1.score -> 4

This is the principle of encapsulation - and it’s going to transform how we can ‘reason about’ our code

  Let's keep creating our objects. What alternative techniques do we have for creating objects?



72

Creating user2 user dot notation

const user2 = {}; //create an empty object

//assign properties to that object

user2.name = "Tim"; 

user2.score = 6;

user2.increment = function() {

  user2.score++;

};

Declare an empty object and add properties with dot notation



73

Creating user3 using Object.create

const user3 = Object.create(null);

user3.name = "Eva";

user3.score = 9;

user3.increment = function() {

  user3.score++;

};

Object.create is going to give us fine-grained control over our object later on

Our code is getting repetitive, we're breaking our DRY principle. And suppose we have millions of users! 
What could we do?



74

Solution 1. Generate objects using a function

function userCreator(name, score) {
  const newUser = {};
  newUser.name = name;
  newUser.score = score;
  newUser.increment = function() {
    newUser.score++;
  };
  return newUser;
};

const user1 = userCreator("Will", 3);
const user2 = userCreator("Tim", 5);
user1.increment()



75

Problems: Each time we create a new user we make space in our computer's 

memory for all our data and functions. But our functions are just copies

Is there a better way?

Benefits: It's simple and easy to reason about!

Solution 1. Generate objects using a function



76

Store the increment function in just one object and have the interpreter, if it 

doesn't find the function on user1, look up to that object to check if it's there

Link user1 and functionStore so the interpreter, on not finding .increment,  makes 

sure to check up in functionStore where it would find it

Make the link with Object.create() technique

Solution 2: Using the prototype chain



77

Solution 2: Using the prototype chain
function userCreator (name, score) {

  const newUser = Object.create(userFunctionStore);

  newUser.name = name;

  newUser.score = score;

  return newUser;

};

const userFunctionStore = {

  increment: function(){this.score++;},

  login: function(){console.log("Logged in");}

};

const user1 = userCreator("Will", 3);

const user2 = userCreator("Tim", 5);

user1.increment();



78

What if we want to confirm our user1 has the property score

function userCreator (name, score) {
  const newUser = Object.create(userFunctionStore);
  newUser.name = name;
  newUser.score = score;
  return newUser;
};

const userFunctionStore = {
  increment: function(){this.score++;},
  login: function(){console.log("Logged in");}
};

const user1 = userCreator("Will", 3);
const user2 = userCreator("Tim", 5);
user1.hasOwnProperty('score') We can use the hasOwnProperty method - 

but where is it?



79

We can use the hasOwnProperty method - but where is it? Is it on user1? 

All objects have a __proto__ property by default which defaults to linking to a big 

object - Object.prototype full of (somewhat) useful functions

We get access to it via userFunctionStore’s __proto__ property - the chain

What if we want to confirm our user1 has the property 
score



80

Declaring & calling a new function inside our ‘method’ increment
function userCreator(name, score) {
   const newUser = Object.create(userFunctionStore);
   newUser.name = name;
   newUser.score = score;
   return newUser;
};

const userFunctionStore = {
   increment: function() {
       this.score++;
   }
};

const user1 = userCreator("Will", 3);
const user2 = userCreator("Tim", 5);
user1.increment(); Let’s start by simplifying (just increment 

method - written over 3 lines now)



81

Create and invoke a new function (add1) inside increment
function userCreator(name, score) {
   const newUser = Object.create(userFunctionStore);
   newUser.name = name;
   newUser.score = score;
   return newUser;
};

const userFunctionStore = {
   increment: function() {
       function add1(){ this.score++; }
       add1()
   }
};

const user1 = userCreator("Will", 3);
const user2 = userCreator("Tim", 5);
user1.increment(); What does this get auto-assigned to?



82

Arrow functions override the normal this rules
function userCreator(name, score) {
   const newUser = Object.create(userFunctionStore);
   newUser.name = name;
   newUser.score = score;
   return newUser;
};

const userFunctionStore = {
   increment: function() {
       const add1 = () => { this.score++; }
       add1()
   }
};

const user1 = userCreator("Will", 3);
const user2 = userCreator("Tim", 5);
user1.increment();

Now our inner function gets its this set by where it 
was saved - it’s a ‘lexically scoped this



83

Problems: No problems! It's beautiful. Maybe a little long-winded

Write this every single time - but it's 6 words!

Benefits: Super sophisticated but not standard

Solution 2: Using the prototype chain

const newUser = Object.create(userFunctionStore);

...

return newUser;



84

csbin.io/oop

Pair 
programming 

challenges



85

Solution 3 - Introducing the keyword that automates 
the hard work: new

When we call the function that returns an object with new in front we automate 2 
things

1. Create a new user object
2. Return the new user object

But now we need to adjust how we write the body of userCreator - how can we:

- Refer to the auto-created object?
- Know where to put our single copies of functions?



86

The new keyword automates a lot of our manual work

function userCreator(name, score) {

  const newUser = Object.create(functionStore);

  newUser this.name = name;

  newUser this.score = score;

  return newUser;

};

functionStore userCreator.prototype // {};

functionStore userCreator.prototype.increment = function(){

  this.score++;

}

const user1 = new userCreator("Will", 3);

Automates the hard work



87

Interlude - functions are both objects and functions 🤨

function multiplyBy2(num){

  return num*2

}

multiplyBy2.stored = 5

multiplyBy2(3) // 6

multiplyBy2.stored // 5

multiplyBy2.prototype // {}

We could use the fact that all functions have a default property `prototype` on their object version, (itself an 
object) - to replace our `functionStore` object



88

The new keyword automates a lot of our manual work

function userCreator(name, score){

  this.name = name;

  this.score = score;

}

userCreator.prototype.increment = function(){ this.score++; };

userCreator.prototype.login = function(){ console.log("login"); };

const user1 = new userCreator(“Eva”, 9)

user1.increment()



89

Benefits: 

Faster to write. Often used in practice in professional code

Problems: 

95% of developers have no idea how it works and therefore fail interviews

We have to upper case first letter of the function so we know it requires ‘new’ to 

work!

Solution 3 - Introducing the keyword that automates 
the hard work: new



90

We’re writing our shared methods separately from our object ‘constructor’ itself 

(off in the userCreator.prototype object)

Other languages let us do this all in one place. ES2015 lets us do so too

Solution 4: The class ‘syntactic sugar’



91

Solution 4: The class ‘syntactic sugar’

class UserCreator {

  constructor (name, score){

    this.name = name;

    this.score = score;

  }

  increment (){ this.score++; }

  login (){ console.log("login"); }

}

const user1 = new UserCreator("Eva", 9);

user1.increment();



92

Solution 4: The class ‘syntactic sugar’

class UserCreator {

  constructor (name, score){

    this.name = name;

    this.score = score;

  }

  increment (){ this.score++; }

  login (){ console.log("login"); }

}

const user1 = new UserCreator("Eva", 9);

user1.increment();

userCreator.prototype.increment = function(){ this.score++; };

userCreator.prototype.login = function(){ console.log("login"); };

function userCreator(name, score){
  this.name = name;
  this.score = score;
}



93

Benefits: 

Emerging as a new standard

Feels more like style of other languages (e.g. Python)

Problems: 

99% of developers have no idea how it works and therefore fail interviews

But you will not be one of them!

Solution 4: The class ‘syntactic sugar’



94

1. Principles of JavaScript

2. Callbacks & Higher order functions

3. Closure (scope and execution context)

4. Asynchronous JavaScript & the event loop

5. Classes & Prototypes (OOP)

Fin


