

Functional programming - a
paradigm for structuring
our complex code

Let’s suppose we have a quiz game we’re building

Every line of code either saves data to memory (e.g. a user’s
score) or uses that data (e.g. increase that user’s score)

But with 1000s of lines of code - every line of code can
potentially use (and depend) on that data

!

High risk - every time I want to change any line, I have to
consider whether it could affect other lines (and when I miss
something, I get bugs)

What’s the answer?

The answer has been functions

Compartmentalise - Reduce the potential impact of
any given line to maybe 10 other lines (inside the
function)

But even within a 10 line function, ‘reasoning’ through
what each line does is hard - & the code may still have
affects outside the function (via global variables)

Functions as we know them may not be enough!

Imagine if we could structure our code into individual
pieces where almost every single line is self-contained

— The only thing any given line depends on are inputs (explicitly stated
in that very line)

— The only consequences of the line would be its output (explicitly stated
in that very line)

— And each line could get a nice human-readable label for when we use it!

This could transform how we write code, debug it and read about others’
code.

But how could we do it!?
!

Functional programming

Tiny functions: Save every single line (or few lines) as its
own function

No consequences except on that line Each function’s only
‘consequence’ is to have its result given to specifically the
next line of code (‘function call’) and not to any other lines

Recombine/compose Build up our application by using
these small blocks of self-contained code combining them
up line-by-line by referring to their human-readable name

We could produce a beautiful ‘to do list’ of our code

pipe(
 getPlayerName,
 getFirstName,
 properCase,
 addUserLabel,
 createUserTemplate
)([{name: 'will sentance', score: 3}]);

And render to the webpage

Functional programming techniques - How do we
recombine?

Combining our functions is going to require a ton of interesting
techniques to:

— rejoin these ‘lines’ of code (tiny functions) into full-sized tasks:

— make it easy to reuse these functions all over the place

— ensure that the tiny functions truly are self-contained

We’re going to see many of these techniques today

(1) Higher order functions, (2) Function composition

— A lot these atoms of code (tiny functions) will be
reusable

— They’re small enough that they’re tasks like
incrementing a number, looping through an array

— We want to write once, use again and again - even
for tasks that are not quite identical - keeping our
code DRY

(3) Pure functions, Immutability of state

We cannot have our lines of code rely on any external
data except their explicitly stated inputs

It’s especially important when you’re reusing/
recombining lots of these little single-step functions in
lots of totally different scenarios - they better be self
contained!

(4) Closure, (5) Function Decoration (6) Partial application
& Currying

We will need ways to:

— Adjust the functions in case they don’t quite fit
together as initially saved

— Give our functions extra features without having to
write a new function from scratch.

If we can do all that, our code will become:

— More readable - every line of code has a name that
indicates its goal known as ’declarative’ programming

— Easier to debug - Each line of code is an individual
unit with clear input and output - no unexpected
consequences of using that line (‘function’)

— Easier to add features - most new things we want do
do are combinations of something we’ve done
elsewhere in our app

Our end and beginning

Functions become reusable, versatile, flexible piece of
code - a series of independent self-contained readable
and predictable steps passing data from one to the next

But it all starts with us being confident with the core
principles of JavaScript

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript
2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure

7. Function decoration

8. Partial application and currying

What happens when javascript executes (runs) my code?

const num = 3;
const multiplyBy2 = (inputNumber) => {
 const result = inputNumber*2;
 return result;
}
const name = "Will"

Code is saved (defined) in functions - to be run later

As soon as we start running our code, we create a global execution context

— Thread of execution (parsing and executing the code line after line)

— Live memory of variables with data (known as a Global Variable
Environment)

Running/calling/invoking a function

This is not the same as defining a function

const num = 3;
const multiplyBy2 = (inputNumber) => {
 const result = inputNumber*2;
 return result;
}

const output = multiplyBy2(num);
const newOutput = multiplyBy2(10);

When you execute a function you create a new execution context comprising:

1. The thread of execution (we go through the code in the function line by line)

2. A local memory ('Variable environment') where anything defined in the function is stored

We keep track of the functions being called in JavaScript
with a Call stack

Tracks which execution context we are in - that is, what
function is currently being run and where to return to
after an execution context is popped off the stack

One global execution context, multiple function
contexts

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions
3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure

7. Function decoration

8. Partial application and currying

Suppose we have a function copyArrayAndMultiplyBy2. Let's diagram it out

const copyArrayAndMultiplyBy2 = (array) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] * 2);
 }
 return output;
}
const myArray = [1,2,3]
const result = copyArrayAndMultiplyBy2(myArray)

What if want to copy array and divide by 2?

const copyArrayAndDivideBy2 = (array) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] /2);
 }
 return output;
}
const myArray = [1,2,3]
const result = copyArrayAndDivideBy2(myArray);

Or add 3?

const copyArrayAndAdd3 = (array) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] +3);
 }
 return output;
}
const myArray = [1,2,3]
const result = copyArrayAndAdd3(myArray);

What principle are we breaking?

We're breaking DRY

What could we do?

We could generalize our function so that we pass in our
specific instruction only when we run the
copyArrayAndManipulate function!

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 = (input) => {
 return input * 2;
}

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

How was this possible?
Functions in javascript = first class objects

They can co-exist with and can be treated like any other
javascript object

1. assigned to variables and properties of other objects

2. passed as arguments into functions

3. returned as values from functions

Callback vs. Higher-order function

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 (input) => {
 return input * 2;
}

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

Which is our callback function? Which is our higher order function?

Callback vs. Higher-order function

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 (input) => {
 return input * 2;
}

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

The function we pass in is a callback function. The outer function that takes in the function
(our callback) is a higher-order function

Higher-order functions

Takes in a function or passes out a function

Just a term to describe these functions - any function
that does it we call that - but there's nothing different
about them inherently

Higher order functions

— Easier to add features - we don’t need to build a brand
new copyArrayAndAdd3 function - just use
copyArrayManipulate with the input of add3. Higher
order functions keep our code DRY

— More readable - copyArrayManipulate(multiplyBy2) - I
know what this is doing more readily than the for loop
style

— Easier to debug - As long as we understand what’s
happening under-the-hood

Pair-programming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions
4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure

7. Function decoration

8. Partial application and currying

Arrow functions in ES2015

const multiplyBy2 = (input) => { return input*2 }

So where the function is a single expression to evaluate and then return, ES2015
lets us remove the {} and return keyword

const multiplyBy2 = (input) => input*2

const output = multiplyBy2(3) //6

We can even remove the parenthesis if there’s only 1 parameter (expected input)

const multiplyBy2 = input => input*2

const output = multiplyBy2(3) //6

Arrow functions fit our our functional programming goals

Every line is an independent, labelled piece of code
where we know exactly what data it uses and affects

Therefore a lot of our functions are going to be just
1. Take Input
2. Use the input in some way
3. Return that as the output in the same line.

Arrow functions let us condense our functions to show
this

Let’s review our use of copyArrayAndManipulate

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 = (input) => {
 return input*2
}

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

Let’s use our shortened version of our callback function
multiplyBy2

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 = input => input*2

const result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

We can even insert our callback function ‘multiplyBy2’
directly (‘anonymously’)

const copyArrayAndManipulate = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const result = copyArrayAndManipulate([1, 2, 3], input => input*2);

//No multiplyBy2 function independently declared/saved

Developers tend to call copyArrayAndManipulate,
map

const map = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 = input => input*2

const result = map([1, 2, 3], multiplyBy2);

Let’s diagram it in a different way and talk about the purpose of
diagramming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions
5. Function composition & pure functions

6. Closure

7. Function decoration

8. Partial application and currying

reduce and reducers

— The most versatile higher order function of all

— Takes a mental shift to look at problems through the
reduce lens

— Can even enable function composition (to come)

We have already seen ‘reduction’ in action

const map = (array, instructions) => {
 const output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

const multiplyBy2 = input => input*2

const result = map([1, 2, 3], multiplyBy2);

What is map actually doing? (accumulator, push etc)

We combined/reduced by:

— Taking the array [] and combine with array[0] by
pushing, take that combined value and combine with
array[1] by pushing and so forth

How else could we combine and use, combine and use?

How else could we ‘combine and use, combine and use’?

— Take the number 0 and combine with array[0] by adding, take that
combined value and combine with array[1] by adding and so forth...

— Take the empty string “ ” and combine with array[0] by appending,
take that combined value and combine with array[1] by appending
and so forth...

We’d want to write our function so that it could handle:

— Any ‘accumulator’ (array, string, number)

— Any combining logic/code/functionality (the ‘reducer’)

This function is known as reduce - it can handle a
remarkable range of tasks

const reduce = (array, howToCombine, buildingUp) => {
 for (let i = 0; i < array.length; i++){
 buildingUp = howToCombine(buildingUp, array[i])
 }
 return buildingUp
}

const add = (a, b) => a + b

const summed = reduce([1,2,3], add, 0)

Should be called ‘reduce from 2 things to 1 repeatedly, inside’

Interlude - arrays, objects and functions have access to
‘methods’

— ‘methods’ are functions that they can use on themselves

const array = [1,2,3]
array.push(10) // Where’s this push method come from?

— The ‘methods’ that arrays get are stored in an object that
every array has access to when you refer to the array, followed
by a ‘dot’ and the method name (See OOP JS Hard Parts)

— The link to this object full of shared methods is on the
__proto__ property

JavaScript has a built-in version of reduce available to all
arrays

Reminder of our version of reduce

const add = (a, b) => a + b

const summed = reduce([1,2,3], add, 0) // summed is 6

With the built-in version , the array is inserted into the reduce function
automatically as the first input/argument. But they produce the same result

const add = (a, b) => a + b

const summed = [1,2,3].reduce(add, 0) // summed is 6

In fact we get a number of built-in higher order functions
in JavaScript

— map, forEach, filter, flatMap, reduce, reduceRight

— All ‘iterate’ through each element of the array and
run a function on each

— But behave differently - MDN guides us

const array = [1,2,3,4,5,6]
const greaterThan2 = num => num > 2

const filteredArray = array.filter(greaterThan2) // [3,4,5,6]

And we can ‘chain’ these higher order functions - pass the
output of one as the input of the next

const array = [1,2,3,4,5,6]
const greaterThan2 = num => num > 2
const add = (a, b) => a + b

const sumOfGreaterThan2 = array.filter(greaterThan2).reduce(add,0)

— The output of each higher order function (HOF),
where it’s an array, has access to all the HOFs (map,
filter, reduce) through the prototype chain

reduce, filter and chaining higher order functions

— Easier to add features - we can reuse filter in a 1000
different filtering scenarios and can chain it up with other
functions

— More readable -
array.filter(greaterThan2).reduce(add,0) - more
readable than individual steps with explicit loop

— Easier to debug - As long as we understand what’s happening
under-the-hood

And reduce is going to enable something even more powerful

Pair programming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions
6. Closure

7. Function decoration

8. Partial application and currying

Function composition

— Chaining with dots relies on JavaScript prototype
feature - functions return arrays which have access to
all the HOFs (map, filter, reduce)

— I’m passing my output into the next function
automatically

— What if I want to chain functions that just return a
regular output

— e.g. multiplyBy2, add3, divideBy5

We could keep track with global variables

const multiplyBy2 = x => x*2
const add3 = x => x+3
const divideBy5 = x => x/5

const initialResult = multiplyBy2(11)
const nextStep = add3(initialResult)
const finalStep = divideBy5(nextStep)

console.log("finalStep", finalStep)

But that’s risky, people can overwrite

Or we can use the fact that JavaScript evaluates every
function call before it moves on

const multiplyBy2 = x => x*2
const add3 = x => x+3
const divideBy5 = x => x/5

const result = divideBy5(add3(multiplyBy2(11)))

Now this is pretty unreadable though
!

(Btw This relies on our functions being ‘referentially transparent’ - we can replace the call to
the function with its return value with no consequences on our app)

We’re combining a function with a value to get a result
then combining that result with another function to get
another result and so on

What’s this remind you of?

Reduce as the most versatile function in programming

const multiplyBy2 = x => x*2
const add3 = x => x+3
const divideBy5 = x => x/5

const reduce = (array, howToCombine, buildingUp) => {
 for (let i = 0; i < array.length; i++){
 buildingUp = howToCombine(buildingUp, array[i])
 }
 return buildingUp
}

const runFunctionOnInput = (input,fn) => {
 return fn(input)
}

const output = reduce([multiplyBy2, add3, divideBy5], runFunctionOnInput, 11)

Listing out our ‘lines of code’ (functions) by name with each one’s consequence
limited to only affect the next ‘line’ (function call/invocation)

const multiplyBy2 = x => x*2
const add3 = x => x+3
const divideBy5 = x => x/5
const subtract4 = x => x-4

const reduce = (array, howToCombine, buildingUp) => {
 for (let i = 0; i < array.length; i++){
 buildingUp = howToCombine(buildingUp, array[i])
 }
 return buildingUp
}

const runFunctionOnInput = (input,fn) => { return fn(input) }

const output = reduce([
 multiplyBy2,
 add3,
 divideBy5,
 subtract4
],
 runFunctionOnInput, 11
)

Function composition

— Easier to add features - This is the essential aspect of
functional javascript - being able to list of our units of
code by name and have them run one by one as
independent, self-contained pieces

— More readable - reduce here is often wrapped in
compose to say ‘combine up’ the functions to run our
data through them one by one. The style is ‘point free’

— Easier to debug - I know exactly the line of code my bug
is in - it’s got a label!

Pure functions

— Functions as tiny units to be combined and run automatically must
be highly predictable

— We rely on using their evaluated result to pass the input to the next
unit of code (automatically). Any ‘side effects’ would destroy this

let num = 10

const add3 = x => {
 num++
 return x+3
}

add3(7)

Immutability

const array = [1,2,3]
const multiplyBy2 = num => num*2

const result = array.map(multiplyBy2) // [2,4,6]
const newResult = array.map(multiplyBy2) // [2,4,6]

If we want the only consequence of map to be on that line and to achieve
‘referential transparency’ (I can the function call with its output and it’s the
same) - then I need to preserve my data and not manipulate it

JavaScript passes a reference (‘link back’) to the arr when it’s inserted into the
function map. If we change (‘mutate’) the input array our function is not pure -
it’s unpredictable - I can’t figure out what it does just be reading it and looking
at its output there in that line - undoes all our hard work

Pure functions & immutability

— Easier to add features - Every saved function be
safely used in new combinations , confident it won’t
break other parts of the app

— More readable - Every line is ‘complete’ - it’s fully
descriptive - exactly what it does is discoverable its
name and limited to that input/output

— Easier to debug - No 1000s of lines of
interdependence

Pair programming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure
7. Function decoration

8. Partial application and currying

Closure

— Most esoteric concept in JavaScript

— Functions are our units to build with but they’re
limited - they forget everything each time they finish
running - with no global state

— Imagine if we could give our functions memories

Reminding ourselves of how functions actually work

const multiplyBy2 = inputNumber => inputNumber*2;

const output = multiplyBy2(7);
const newOutput = multiplyBy2(3);

No memory of the previous execution - imagine if we
could give our functions permanent memories

It begins with returning a function from a function

Let's call (run) our generated function with the input 3

const functionCreator = () => {
 let counter = 0
 const add3 = (num) => {
 const result = num+3
 return result
 }
 return add3
}

const generatedFunc = functionCreator()

const result = generatedFunc(2) //5

Calling a function inside the function call in which it was
defined

const outer = () => {
 let counter = 0;
 const incrementCounter = () => {
 counter ++;
 }
 incrementCounter();
}

outer();

What determines what data your function have access to
when you call the function? Where we call it?

But what if we call our function outside of where it was
defined?

const outer = () => {
 let counter = 0;
 const incrementCounter = () => {
 counter ++;
 }
}

outer();

incrementCounter();

What happens here?

There is a way to run a function outside where it was
defined

Without an error - we return the inner function and assign it
to a new global label

const outer = () => {
 let counter = 0;
 const incrementCounter = () => {
 counter ++;
 }
 return incrementCounter
}

const newFunction = outer();

Now we can call the function that was originally saved as
incrementCounter by its new global label
newFunction

const outer = () => {
 let counter = 0;
 const incrementCounter = () => {
 counter ++;
 }
 return incrementCounter
}

const newFunction = outer();
newFunction()
newFunction()

But we have a problem
!

The bond

When a function is defined, it gets a bond to the surrounding Local
Memory (“Variable Environment”) in which it has been defined

const outer = () => {
 let counter = 0;
 const incrementCounter = () => {
 counter ++;
 }
 return incrementCounter
}

const newFunction = outer();
newFunction()
newFunction()

The ‘Backpack’

1. When incrementCounter is defined, it gets a bond to the surrounding Local
Memory of live data in outer in which it has been defined

2. We then return incrementCounter out of outer into global and store it in
myNewFunction

3. BUT we maintain the bond to the surrounding live local memory from inside of outer
- this live memory gets ‘returned out’ attached to the incrementCounter function
definition and is therefore now stored attached to myNewFunction - even though
outer’s execution context is long gone

4. When we run myNewFunction in the global execution context, it will first look in its
own local memory for any data it needs (as we’d expect), but then in its ‘backpack’
before it looks in global memory

What’s the official name for the ‘backpack’?

The Closed over Variable Environment (COVE) or ‘Closure’

This ‘backpack’ of live data that gets returned out with
incrementCounter is known as the ‘closure’

The ‘backpack’ (or ‘closure’) of live data is attached
incrementCounter (then to myNewFunction)
through a hidden property known as [[scope]] which
persists when the inner function is returned out

Closure in functional JavaScript

— Easier to add features - Our functions can now have
persistent permanent memories attached to them -
it’s going to let us build dramatically more powerful
functions

— Easier to debug - Definitely need to know how it’s
working under the hood!

Pair programming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure

7. Function decoration
8. Partial application and currying

Functional Decoration

— Now we can convert functions more easily to make
them suit our task

— Without writing a new function from scratch

— We can run code on other bits of code to appear to
change them

To add a permanent memory to an existing function we have to create a new
function that will run the existing function inside of itself

const oncify = (convertMe) => {
 let counter = 0
 const inner = (input) => {
 if (counter === 0){
 const output = convertMe(input)
 counter++
 return output
 }
 return "Sorry"
 }
 return inner
}

const multiplyBy2 = num => num*2

const oncifiedMultiplyBy2 = oncify(multiplyBy2)

oncifiedMultiplyBy2(10) // 20
oncifiedMultiplyBy2(7) // Sorry

Function decoration

— Easier to add features - We can ’pseudo’ edit our
functions that we’ve already made - into functions
that behave similar but with bonus features!

— Easier to debug - Definitely need to know how it’s
working under the hood!

Pair programming

JavaScript the Hard Parts - Functional Programming

1. Principles of JavaScript

2. Higher order functions

3. Arrow and anonymous functions

4. reduce, filter and chaining higher order functions

5. Function composition & pure functions

6. Closure

7. Function decoration

8. Partial application and currying

Function composition is powerful but every function needs
to behave the same way

— Taking in one input and returning out one output

— What if I have a function I want to use that expects two inputs

— This is ‘arity mismatch’

— We need to ‘decorate’ our function to prefill one of its inputs

This means creating a new function that calls our multi-
argument function - with he argument and the multi-argument
function stored conveniently in the backpack

It’s known as ‘Partial application’

const multiply = (a, b) => a * b

function prefillFunction (fn, prefilledValue){
 const inner = (liveInput) => {
 const output = fn(liveInput, prefilledValue)
 return output
 }
 return inner
}

const multiplyBy2 = prefillFunction(multiply, 2)

const result = multiplyBy2(5)

Partial application and currying

— In practice we may have to prefill one, two... multiple
arguments at different times

— We can convert (‘decorate’) any function to a
function that will accept arguments one by one and
only run the function in full once it has all the
arguments

— This is a more general version of partial application

Partial application & currying

— Easier to add features - Mismatched arity - no
problem! We write a function multiply once and then
reuse it for different situations by ‘editing’ its arguments

— More readable - We can use our composition/reduce to
list out functions to run one-by-one on our data, even if
the functions excepted more than 1 input!

— Easier to debug - Individual units of functionality
possible even with 1+ input expected

Functional programming

Every line of code is named (or if not, its so short we can
see exactly what it does), is an independent unit that
has all of its consequences in that single line

We can then couple up (compose) these single units of
code/instructions (functions) up into complex tasks

But with every component of the task independent,
recognizable, reusable, versatile and easily debuggable!

We have to do some feats to wrestle our tiny units of code
(functions)

Combining up functions with multiple inputs from
libraries

We’ve seen many of them (higher order functions,
reduction/composition, closure, function decoration,
partial application and currying). And there are even
more - monads, applicators et al!

Readable, debuggable and easy to add features

pipe(
 getPlayerName,
 getFirstName,
 properCase,
 addUserLabel,
 createUserTemplate
)([{name: 'will sentance', score: 3}]);

But our code is now a set of independent, self contained
steps we can wield to solve any problem and become
true composers of our code.

Fin

