
Redux and Mobx
Steve Kinney

A Frontend Masters Workshop

Hi, I’m Steve.
(@stevekinney)

We’re going to talk about
state—using Redux and MobX.

To build our understanding of how to manage
state in a large application, we’re going to take
a whirlwind tour of a number of approaches.

We’re going to start from the
very basics and work our way up.

What are we going to learn in this course?

• The fundamentals of Redux—outside of React.

• Hooking Redux up to React.

• Normalizing the structure of your state.

• Using selectors to prevent needless re-renders.

What are we going to learn in this course?

• How middleware works with Redux.

• Making asynchronous API calls with Redux Thunk.

• Cracking open the doors to the wild world or Redux
Observable.

• Mixing reactive and object-oriented state management
with MobX.

Why is this important?

• Doing a massive refactor of your state later is fraught with
peril.

• Having really great state management inspires joy.

• (The first point is probably more important.)

-thunk

What kind of applications
are we going to build today?

But, this workshop is about
more than just the libraries.

Libraries come and go.

Patterns and approaches
stick around.

Managing UI state is not a solved
problem. New ideas and

implementations will come along.

My goal is to help you think about and
apply these conceptual patterns, regardless

of what library is the current flavor.

Prologue
Some terminology and

concepts before we get started

Pure vs. Impure Functions

Pure functions take arguments and
return values based on those

arguments.

Impure functions an mutate things
from outside their scope or produce

side effects.

!// Pure
const add = (a, b) !=> {
 return a + b;
}

!// Impure
const b;

const add = (a) !=> {
 return a + b;
}

!// Impure
const add = (a, b) !=> {
 console.log('lolololol');
 return a + b;
}

!// Impure
const add = (a, b) !=> {
 Api.post('/add', { a, b }, (response) !=> {
 !// Do something.
 })
};

Mutating arrays and
objects is also impure.

Not Mutating Objects and
Arrays

!// Copy object
const original = { a: 1, b: 2 };
const copy = Object.assign({}, original);

!// Copy object
const original = { a: 1, b: 2 };
const copy = { !!...original };

!// Extend object
const original = { a: 1, b: 2 };
const extension = { c: 3 };
const extended = Object.assign({}, original, extension);

!// Extend object
const original = { a: 1, b: 2 };
const extension = { c: 3 };
const extended = { !!...original, !!...extension };

!// Copy array
const original = [1, 2, 3];
const copy = [1, 2, 3].slice();

!// Copy array
const original = [1, 2, 3];
const copy = [!!...original];

!// Extend array
const original = [1, 2, 3];
const extended = original.concat(4);
const moreExtended = original.concat([4, 5]);

!// Extend array
const original = [1, 2, 3];
const extended = [!!...original, 3, 4];
const moreExtended = [!!...original, !!...extended];

Chapter One
Redux without React

What is Redux?

We’re going to start by explaining
Redux outside of the context of

React.

The whole state tree of your
application is kept in one store.

Just one plain old
JavaScript object. 😋

One does not simply
modify the state tree.

Instead, we dispatch
actions.

And now: A very scientific
illustration.

Redux is small.

applyMiddleware: function()
bindActionCreators: function()
combineReducers: function()
compose: function()
createStore: function()

http://bit.ly/redux-fun

Chapter Two
Redux and React

We’re going to do that thing again.

• I’m going to code up a quick example using Redux and
React.

• Then I’m going to explain the moving pieces once you’ve
seen it in action.

react-redux

Let’s do this out of order…

• I’m going to hook Redux up to a React application.

• Then we’ll dive into the concepts.

Exercise

• Clone and install https://github.com/stevekinney/redux-
counter.

• I added the ability to increment the counter.

• You’re on the hook to decrement it. Easy peasy. (What does
that even mean?)

https://github.com/stevekinney/redux-counter
https://github.com/stevekinney/redux-counter

Good news! The react-redux
library is also super small.

Even smaller than Redux!

<Provider !/>
connect()

connect();

A function that receives store.dispatch and then
returns an object with methods that will call dispatch.

const mapDispatchToProps = (dispatch) !=> {
 return {
 increment() { dispatch(increment()) },
 decrement() { dispatch(decrement()) }
 }
};

Remember bindActionCreators?

const mapDispatchToProps = (dispatch) !=> {
 return bindActionCreators({
 increment,
 decrement
 }, dispatch)
};

Even better!

const mapDispatchToProps = {
 increment,
 decrement,
};

This is all very cool, but where is the store
and how does connect() know about it?

connect(mapStateToProps, mapDispatchToProps)(WrappedComponent);

It’s the higher-order component pattern!

Pick which things you want from the store.

(Maybe transform the data if you need to.)

Pick which actions this component needs.

Mix these two together and pass them as props to a presentational
component.

This is a function that you make that takes the entire state
tree and boils it down to just what your components needs.

const mapStateToProps = (state) !=> {
 return {
 items: state.items
 }
};

This would be the entire state tree.

const mapStateToProps = (state) !=> {
 return state;
};

This would be just the packed items.

const mapStateToProps = (state) !=> {
 return {
 items: items.filter(item !=> item.packed)
 };
};

<Provider store={store}>
 <Application !/>
!</Provider>

React State vs. Redux State

class NewItem extends Component {
 state = { value: '' };

 handleChange = event !=> {
 const value = event.target.value;
 this.setState({ value });
 };

 handleSubmit = event !=> {
 const { onSubmit } = this.props;
 const { value } = this.state;

 event.preventDefault();

 onSubmit({ value, packed: false, id: uniqueId() });
 this.setState({ value: '' });
 };

 render() { … }
}

Now, it will be in four files!

• NewItem.js

• NewItemContainer.js

• new-item-actions.js

• items-reducer.js

this.setState() and useState()
are inherently simpler to reason about

than actions, reducers, and stores.

Chapter Three
Normalizing Our Data

Nota bene: We’re going to start from the
redux-basis branch of https://

github.com/stevekinney/kanbananza.

https://github.com/stevekinney/kanbananza
https://github.com/stevekinney/kanbananza

Exercise
• Check out reducers/cards-reducer.js and make it

look suspiciously like the reducer for lists.

• Hook it into reducers/index.js.

• Create a CardContainer that looks at
ownProps.cardId in order grab a card from state.

• In components/List.js, map over `list.cards` in order to
create a CardContainer for each ID in the array.

Exercise

• I implemented the ability to create a card.

• Your job is to implement the same for creating a list.

Exercise

• Refactor card creation to use our handy new abstraction.

• Here is a hint: take some inspiration from what we just did
with lists.

Exercise

• This should be old hat at this point, but we want to wire up
the Users component and the User component.

Exercise

• Alright—you’re going to create a new user.

Chapter Four
Selectors and Reselect

Live Coding

Let’s say I did this refactor…
import { connect } from 'react-redux';
import Users from '!../components/Users';

const getUsers = state !=> {
 console.log('getUsers', state.users.ids);
 return state.users.ids;
};

const mapStateToProps = state !=> {
 return { users: getUsers(state) };
};

export default connect(mapStateToProps)(Users);

Exercise

• Why are the users reloading when I change a card?

• Nothing changed with the users!

• Can you implement a selector to stop this tomfoolery?

An aside: Implementing
Undo and Redo

Holding onto the past,
present, and future.

if (action.type !!=== ADD_NEW_ITEM) {
 const { item } = action.payload;
 return {
 past: [present, !!...past],
 present: [!!...present, item],
 future,
 };
}

if (action.type !!=== UNDO_ITEM_ACTION) {
 if (!past.length) return state;
 const newFuture = [present, !!...future];
 const [newPresent, !!...newPast] = past;
 return {
 past: newPast,
 present: newPresent,
 future: newFuture
 }
}

if (action.type !!=== REDO_ITEM_ACTION) {
 if (!future.length) return state;
 const [newPresent, !!...newFuture] = future;
 const newPast = [present, !!...past];
 return {
 past: newPast,
 present: newPresent,
 future: newFuture
 }
}

Chapter Five
Redux Thunk

Thunk?

thunk (noun): a function
returned from another function.

function definitelyNotAThunk() {
 return function aThunk() {
 console.log('Hello, I am a thunk.’);
 }
}

The major idea behind a thunk is
that its code to be executed later.

Here is the thing with Redux—it
only accepts objects as actions.

redux-thunk is a middleware that allows
us to dispatch a function (thunk) now
that will dispatch a legit action later.

export const getAllItems = () !=> ({
 type: UPDATE_ALL_ITEMS,
 items,
});

export const getAllItems = () !=> {
 return dispatch !=> {
 Api.getAll().then(items !=> {
 dispatch({
 type: UPDATE_ALL_ITEMS,
 items,
 });
 });
 };
};

Exercise

• Implement Redux Thunk in order to dispatch a function
that will in tern dispatch an action when we hear back
from the API.

• Your humble instructor is not responsible for whatever
tweets have the word JavaScript in them.

Chapter Seven
Redux Observable

The action creators in redux-thunk
aren’t pure and this can make testing

tricky.

it('fetches items from the database', () !=> {
 const itemsInDatabase = {
 items: [{ id: 1, value: 'Cheese', packed: false }],
 };

 fetchMock.getOnce('/items', {
 body: itemsInDatabase,
 headers: { 'content-type': 'application/json' },
 });

 const store = mockStore({ items: [] });

 return store.dispatch(actions.getItems()).then(() !=> {
 expect(store.getItems()).toEqual({
 type: GET_ALL_ITEMS,
 items: itemsInDatabase
 });
 });
});

It would be great if we could
separate out the dispatch of actions

from the talking to the database.

The tricky part is that we need the
information to dispatch the action

that’s going to the store.

And now: Just enough RxJS
to get yourself in trouble.

What is an observable?

• A stream of zero, one, or more values.

• The stream comes in over a series of time.

• The stream is cancelable.

What is Redux Observable?

• Redux Observable is a combination of RxJS and Redux.

• Side effect managment using "epics."

What is an epic? 🙄

• A function that takes a stream of all actions dispatched
and returns a stream of new actions to dispatch.

The Basic Example
const pingPong = (action, store) !=> {
 if (action.type !!=== ‘PING’) {
 return {
 type: ‘PONG’
 };
 }
};

The Basic Example

const pingPongEpic = (action$, store) !=>
 action$.ofType(‘PING’)
 .map(action !=> ({ type: ‘PONG’ }));

Exercise

• Implement Redux Observable in order to dispatch a
function that will in tern dispatch an action when we hear
back from the API.

• Again—Your handsome instructor is not responsible for
whatever tweets have the word JavaScript in them.

“
”

Lodash for async. — Ben
Lesh, probably.

Chapter Eight
MobX

An Aside: Computed
Properties

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 fullName() {
 return `${this.firstName} ${this.lastName}`;
 }
}

const person = new Person('Grace', 'Hopper');

person.firstName; !// 'Grace'
person.lastName; !// 'Hopper'
person.fullName; !// function fullName() {…}

const person = new Person('Grace', 'Hopper');

person.firstName; !// 'Grace'
person.lastName; !// 'Hopper'
person.fullName(); !// 'Grace Hopper'

Ugh. 😔

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 get fullName() {
 return `${this.firstName} ${this.lastName}`;
 }
}

const person = new Person('Grace', 'Hopper');

person.firstName; !// 'Grace'
person.lastName; !// 'Hopper'
person.fullName; !// 'Grace Hopper'

Much Better! 😎

Getters and setters may seem like
some fancy new magic, but they’ve

been around since ES5.

Not as as elegant, but it’ll do.
function Person(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

Object.defineProperty(Person.prototype, 'fullName', {
 get: function () {
 return this.firstName + ' ' + this.lastName;
 }
});

An Aside: Decorators

Effectively decorators provide a
syntactic sugar for higher-order

functions.

Object.defineProperty(Person.prototype, 'fullName', {
 enumerable: false,
 writable: false,
 get: function () {
 return this.firstName + ' ' + this.lastName;
 }
});

Target Key

Descriptor

function decoratorName(target, key, descriptor) {
 !// …
}

function readonly(target, key, descriptor) {
 descriptor.writable = false;
 return descriptor;
}

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 @readonly get fullName() {
 return `${this.firstName} ${this.lastName}`;
 }
}

npm install core-decorators

@autobind
@deprecate
@readonly
@memoize
@debounce
@profile

A big problem with decorators
is that they aren’t exactly “real.”

Okay, so… MobX

Imagine if you could simply
change your objects.

A primary tenet of using MobX is that you can
store state in a simple data structure and allow
the library to care of keeping everything up to

date.

http://bit.ly/super-basic-mobx

http://bit.ly/super-basic-mobx

Ridiculously simplified, not real code™
const onChange = (oldValue, newValue) !=> {
 !// Tell MobX that this value has changed.
}

const observable = (value) !=> {
 return {
 get() { return value; },
 set(newValue) {
 onChange(this.get(), newValue);
 value = newValue;
 }
 }
}

This code…
class Person {
 @observable firstName;
 @observable lastName;

 constructor(firstName, lastName) {
 this.firstName;
 this.lastName;
 }
}

…is effectively equivalent.
function Person (firstName, lastName) {
 this.firstName;
 this.lastName;

 extendObservable(this, {
 firstName: firstName,
 lastName: lastName
 });
}

const extendObservable = (target, source) !=> {
 source.keys().forEach(key !=> {
 const wrappedInObservable = observable(source[key]);
 Object.defineProperty(target, key, {
 set: value.set.
 get: value.get
 });
 });
};

!// This is the @observable decorator
const observable = (object) !=> {
 return extendObservable(object, object);
};

Four-ish major concepts
• Observable state

• Actions

• Derivations

• Computed properties

• Reactions

Computed properties update their
value based on observable data.

Reactions produce side
effects.

class PizzaCalculator {
 numberOfPeople = 0;
 slicesPerPerson = 2;
 slicesPerPie = 8;

 get slicesNeeded() {
 return this.numberOfPeople * this.slicesPerPerson;
 }

 get piesNeeded() {
 return Math.ceil(this.slicesNeeded / this.slicesPerPie);
 }

 addGuest() { this.numberOfPeople!++; }
}

import { action, observable, computed } from 'mobx';

class PizzaCalculator {
 @observable numberOfPeople = 0;
 @observable slicesPerPerson = 2;
 @observable slicesPerPie = 8;

 @computed get slicesNeeded() {
 console.log('Getting slices needed');
 return this.numberOfPeople * this.slicesPerPerson;
 }

 @computed get piesNeeded() {
 console.log('Getting pies needed');
 return Math.ceil(this.slicesNeeded / this.slicesPerPie);
 }

 @action addGuest() {
 this.numberOfPeople!++;
 }
}

You can also pass most common data structures
to MobX.

• Objects — observable({})

• Arrays — observable([])

• Maps — observable(new Map())

Caution: If you add properties to an object
after you pass it to observable(), those

new properties will not be observed.

Use a Map() if you’re going
to be adding keys later on.

MobX with React

@observer class Counter extends Component {
 render() {
 const { counter } = this.props;
 return (
 <section>
 <h1>Count: {counter.count}!</h1>
 <button onClick={counter.increment}>Increment!</button>
 <button onClick={counter.decrement}>Decrement!</button>
 <button onClick={counter.reset}>Reset!</button>
 !</section>
);
 }
}

const Counter = observer(({ counter }) !=> (
 <section>
 <h1>Count: {counter.count}!</h1>
 <button onClick={counter.increment}>Increment!</button>
 <button onClick={counter.decrement}>Decrement!</button>
 <button onClick={counter.reset}>Reset!</button>
 !</section>
));

class ContainerComponent extends Component () {
 componentDidMount() {
 this.stopListening = autorun(() !=> this.render());
 }

 componentWillUnmount() {
 this.stopListening();
 }

 render() { … }
}

import { Provider } from 'mobx-react';

import ItemStore from './store/ItemStore';
import Application from './components/Application';

const itemStore = new ItemStore();

ReactDOM.render(
 <Provider itemStore={itemStore}>
 <Application !/>
 !</Provider>,
 document.getElementById('root'),
);

@inject('itemStore')
class NewItem extends Component {
 state = { … };

 handleChange = (event) !=> { … }

 handleSubmit = (event) !=> { … }

 render() { … }
}

const UnpackedItems = inject('itemStore')(
 observer(({ itemStore }) !=> (
 <Items
 title="Unpacked Items"
 items={itemStore.filteredUnpackedItems}
 total={itemStore.unpackedItemsLength}
 >
 <Filter
 value={itemStore.unpackedItemsFilter}
 onChange={itemStore.updateUnpackedItemsFilter}
 !/>
 !</Items>
)),
);

Exercise
• I’ll implement the basic functionality for adding and

removing items.

• Then you’ll implement toggling.

• Then I’ll implement filtering.

• Then you’ll implement marking all as unpacked.

Exercise

• Whoa, it’s another exercise!

• This time it will be the same flow as last time, but we’re
going to add asynchronous calls to the server into the mix.

Epilogue
Closing Thoughts

MobX versus Redux

MobX versus Redux
Dependency Graphs versus Immutable

State Trees

Advantages of Dependency Graphs

• Easy to update

• There is a graph structure: nodes can refer to each other

• Actions are simpler and co-located with the data

• Reference by identity

Advantages of Immutable State Trees

• Snapshots are cheap and easy

• It’s a simple tree structure

• You can serialize the entire tree

• Reference by state

state = {
 items: [
 { id: 1, value: "Storm Trooper action figure", owner: 2 },
 { id: 2, value: "Yoga mat", owner: 1 },
 { id: 4, value: "MacBook", owner: 3 },
 { id: 5, value: "iPhone", owner: 1 },
 { id: 7, value: "Melatonin", owner: 3 }
],
 owners: [
 { id: 1, name: "Logan", items: [2, 5] },
 { id: 2, name: "Wes", items: [1] },
 { id: 3, name: "Steve", items: [4, 7] }
]
}

state = {
 items: {
 1: { id: 1, value: "Storm Trooper action figure", owner: 2 },
 2: { id: 2, value: "Yoga mat", owner: 1 },
 4: { id: 4, value: "MacBook", owner: 3 },
 5: { id: 5, value: "iPhone", owner: 1 },
 7: { id: 7, value: "Melatonin", owner: 3 }
 },
 owners: {
 1: { id: 1, name: "Logan", items: [2, 5] },
 2: { id: 2, name: "Wes", items: [1] },
 3: { id: 3, name: "Steve", items: [4, 7] }
 }
}

Where can you take this
from here?

Could you implement the undo/
redo pattern outside of Redux?

Would an action/reducer
pattern be helpful in MobX?

Would async/await make a
suitable replacement for thunks or

observables?

Can you implement undo
with API requests?

You now have a good sense
of the lay o’ the land.

Questions?

