Redux and Mobx

Steve Kinney
A Frontend Masters Workshop

Hi, I'm Steve.
(@stevekinney)

TWILIO

"> SendGrid

We're going to talk about
state—using Redux and MobX.

To build our understanding of how to manage
state in a large application, we're going to take
a whirlwind tour of a number of approaches.

We're going to start from the
very basics and work our way up.

What are we going to learn in this course?

 The fundamentals of Redux—outside of React.
« Hooking Redux up to React.
 Normalizing the structure of your state.

» Using selectors to prevent needless re-renders.

What are we going to learn in this course?

* How middleware works with Redux.
 Making asynchronous API calls with Redux Thunk.

e Cracking open the doors to the wild world or Redux
Observable.

e Mixing reactive and object-oriented state management
with MobX.

Why 1s this important?

 Doing a massive refactor of your state later is fraught with
peril.

« Having really great state management inspires joy.

 (The first point is probably more important.)

00 .. SendGrid Marketing Campaigr x

& C' @& Secure | https://sendgrid.com/marketing_campaigns/ui/campaigns/1917514/edit * © H :

,/ DESIGN B Save Draft A Send Campaign

Settings Build Tags A/B Testing

v MODULE STYLES From:
Subject:

BUTTON Preheader:

Button Color #333333 @] <> I T

This is my awesom tton

Fomt: celer #FFFEEF Q Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam tincidunt elementum sem non

luctus. Ut dolor nisl, facilisis non magna quis, elementum ultricies tortor. In mattis, purus ut

Width AU tincidunt egestas, ligula nulla accumsan justo, vitae bibendum orci ligula id ipsum. Nunc

elementum tincidunt libero, in ullamcorper magna volutpat a.
Height 16 px
Padding 2px - 18px I 12px « 18 px

Border Radius

Border Width

Font Family
Arial

Font Size

Font Weight
normal

4| mobx (1).svg v |4 react.svg * |\ mobx.svg v |4 flux.svg ¥ sShowAll x

What kind of applications
are we going to build today?

®®® React App

C @ localhost:3000

Increment Decrement Reset

®ee® Kanbonanza

C @ localhost:3000

Users New List Title

Backburner Doing

Toggle Options Toggle Options

Description

Master React state Learn enough
ooke lik React to make a

_ It looks like it's come a

Steve Kinney long way. The Context mess

Steve Kinney

struggle is _real_.

' Doing v
Toggle Options Card assigned to Steve

Learn Redux Steve Kinney
Card unassigned.

Marc Grabanski

| heard that it can help, Toggle Options
but it looks like it has a (Unassigned)
lot of boilerplate!

. le Opti
Card unassigned. Toggle Options

(Unassigned)

Toggle Options

®®® Jetsetter

C @ localhost:3000

Unpacked Items (2 / 2)

|

| iPhone Charger Remove
| USB-C Dongle Remove

Packed Items (1/1)

|

iPhone Remove

Mark All as Unpacked

000 Star Wars Characters

C @ localhost:3000

Star Wars Autocomplete

L ando Calrissian

Rugor Nass

Poggle the Lesser

ORONC @ React App X -4

C @ https://2w7km.codesandbox.io

Tweet Stream

Fetch Tweets

Cyber Solutions-71 writes:

RT @codewallblog: Installing & Using MyCli on Windows - https://t.co/Y81mAsmsty #Developer #node #nodejs #coding #js #angularjs #vuejs #r...

A programmer writes:

Curso de VuedS 2 = https://t.co/eZS1Z1vvY0 #vuejs #javascript https://t.co/ASFYWYkuLc

PhoenixCodes writes:

RT @CODE_THAT_THANG: #Day063 of @careerdevs #365DaysOfCode Solved an algorithm where | was tasked to sum all prime numbers. Take a look and...

xael bot writes:

But, this workshop Is about
more than just the libraries.

Libraries come and go.

Patterns and approaches
stick around.

Managing Ul state Is not a solved
problem. New ideas and
iImplementations will come along.

My goal I1s to help you think about and
apply these conceptual patterns, regardless
of what library 1s the current flavor.

Prologue

Some terminology and
concepts before we get started

Pure vs. Impure Functions

Pure functions take arguments and
return values based on those
arguments.

Impure functions an mutate things
from outside their scope or produce
side effects.

// Pure
const add = (a, b) = {
return a + b;

)

// Impure
const b;

const add = (a) = {
return a + b;

)

// Impure

const add = (a, b) = {
console.log('lolololol"');
return a + b;

}

// Impure
const add = (a, b)) = {
Api.post('/add', { a, b }, (response) = {
// Do something.
})

&

Mutating arrays and
objects Is also impure.

Not Mutating Objects and
Arrays

// Copy object
const original = { a: 1, b: 2 };
const copy = Object.assign({}, original);

// Copy object
const original = { a: 1, b: 2 };
const copy = {1 ...original };

// Extend object

con
con
con

st original
st extension
st extended

{ a: 1, b: 2 };

{ c: 3 };
Object.assign({}, original, extension);

// Extend object

con
con

con

st original
st extension
st extended

{ a: 1, b: 2 };

1

{ c: 3 };

... original,

... extension };

// Copy array
const original = [1, 2, 3]1;
const copy = [1, 2, 3].slice();

// Copy array
const original = [1, 2, 3];
const copy = | ...original |;

// Extend array

const original = [1, 2, 3];

const extended = original.concat(4);

const moreExtended = original.concat([4, 5]);

// Extend array

const original = [1, 2, 3];

const extended = [...original, 3, 4 1;

const moreExtended = [...original, ...extended];

Chapter One

Redux without React

What is Redux?

We're going to start by explaining
Redux outside of the context of
React.

The whole state tree of your
application is kept in one store.

Just one plain old
JavaScript object. @

One does not simply
modify the state tree.

Instead, we dispatch
actions.

And now: A very scientific
ILlustration.

Acrion
C reatovr
Fuetion

(Ma be
Yﬂca::\’)

Redux Is small.

applyMiddleware: function()
bindActionCreators: function()
combineReducers: function()
compose: function()
createStore: function()

http://bit.ly/redux-fun

Chapter Two

Redux and React

We're going to do that thing again.

* I'm going to code up a quick example using Redux and
React.

« Then I'm going to explain the moving pieces once you’'ve
seen It In action.

react-redux

Let’s do this out of order...

* I'm going to hook Redux up to a React application.

e Then we'll dive into the concepts.

®®® React App

C @ localhost:3000

Increment Decrement Reset

Exercise

e Clone and install https://github.com/stevekinney/redux-
counter.

* | added the ability to increment the counter.

» You're on the hook to decrement it. Easy peasy. (What does
that even mean?)

https://github.com/stevekinney/redux-counter
https://github.com/stevekinney/redux-counter

Good news! The react-redux
library Is also super small.

Fven smaller than Redux!

<Provider />
connect()

connect():

A function that receives store.dispatch and then
returns an object with methods that will call dispatch.

const mapDispatchToProps = (

return {

incre
decre

}
F;

|

T

ent() { dispatch(incren
ent() { dispatch(decren

ent()) },
ent()) }

Remember bindActionCreators?

const mapDispatchToProps = () = {
return bindActionCreators({

increment,

decrement
}, dispatch)
¥

Even better!

const mapDispatchToProps = {
increment,
decrement,

b

This is all very cool, but where is the store
and how does connect() know about it?

It's the higher-order component pattern!
Pick which things you want from the store.

(Maybe transform the data if you need to.)

connect(mapStateToProps, mapDispatchToProps)(WrappedComponent);

Pick which actions this component needs.

Mix these two together and pass them as props to a presentational
component.

This 1s a function that you make that takes the entire state
tree and boils 1t down to just what your components needs.

const mapStateToProps = () = {
return {
1tems: state.1items

}
&

This would be the entire state tree.

const mapStateToProps = () = 1
return state:

&

This would be just the packed 1items.

const mapStateToProps = () = A
return 1
items: items.filter(= item.packed)
b

&

<Provider store={store}>
<Application />
</Provider>

React State vs. Redux State

o000 You Might Not Need Redux — | X

= C' & A Medium Corporation [US] | https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367

Uprade Medium

Applause from Jay Phelps, Drew Reynolds, and 3,618 others

Dan Abramov
é Working on @reactjs. Co-author of Redux and Create React App. Building tools for humans.

Sep 19,2016 - 3 min read

You Might Not Need Redux

People often choose Redux before they need it. “What if our app doesn’t scale
without it?” Later, developers frown at the indirection Redux introduced to
their code. “Why do I have to touch three files to get a simple feature
working?” Why indeed!

People blame Redux, React, functional programming, immutability, and many
other things for their woes, and I understand them. It is natural to compare
Redux to an approach that doesn’t require “boilerplate” code to update the
state, and to conclude that Redux is just complicated. In a way it is, and by

design so.
Redux offers a tradeoff. It asks you to:

+ Describe application state as plain objects and arrays.

1

Next story
@ 8.5K Q 69 ¥J @ Q ES8 was Released and here are...

00 You Might Not Need Redux — [X

= C' & A Medium Corporation [US] | https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367

Medium a o @

Applause from Jay Phelps, Drew Reynolds, and 3,618 others

Dan Abramov

Working on @reactjs. Co-author of Redux and Create React App.
Building tools for humans.

Sep 19,2016 - 3 min read

You Might Not Need Redux
& 8.5k

class NewItem extends Component {
state = { value: '' };

handleChange = event = {
const value = event.target.value;
this.setState({ value });

ts
handleSubmit = event = {

const { onSubmit } = this.props;
const { value } = this.state;

event.preventDefault();

onSubmit({ value, packed: false, id: uniqueId() });
this.setState({ value: '' });

b
render() { .. }

Now, 1t will be In four files!

NewItem. Js
NewItemContalner.js
new-1tem-actions. Js

1tems-reducer. js

this.setState() and useState()
are Inherently simpler to reason about
than actions, reducers, and stores.

Chapter Three

Normalizing Our Data

®ee® Kanbonanza

C @ localhost:3000

Users New List Title

Backburner Doing

Toggle Options Toggle Options

Description

Master React state Learn enough
ooke lik React to make a

_ It looks like it's come a

Steve Kinney long way. The Context mess

Steve Kinney

struggle is _real_.

' Doing v
Toggle Options Card assigned to Steve

Learn Redux Steve Kinney
Card unassigned.

Marc Grabanski

| heard that it can help, Toggle Options
but it looks like it has a (Unassigned)
lot of boilerplate!

. le Opti
Card unassigned. Toggle Options

(Unassigned)

Toggle Options

Nota bene: We're going to start from the

redux-basis branch of https://
github.com/stevekinney/kanbananza.

https://github.com/stevekinney/kanbananza
https://github.com/stevekinney/kanbananza

Exercise

Check out reducers/cards-reducer. js and make it
look suspiciously like the reducer for lists.

Hook it into reducers/index. js.

Create a CardContailner that looks at
ownProps.cardId in order grab a card from state.

In components/List. js, map over list.cards in order to
create a CardContainer for each ID in the array.

Exercise

* | iImplemented the ability to create a card.

e Your job is to implement the same for creating a list.

Exercise

e Refactor card creation to use our handy new abstraction.

* Here is a hint: take some inspiration from what we just did
with lists.

Exercise

e This should be old hat at this point, but we want to wire up
the Users component and the User component.

Exercise

o Alright—you’re going to create a new user.

Chapter Four

Selectors and Reselect

Live Coding

Let’s say | did this refactor...

import { connect } from 'react-redux';
import Users from '../components/Users';

const getUsers = state = {
console.log('getUsers', state.users.ids);
return state.users.1ids;

ts

const mapStateToProps = state = {
return { users: getUsers(state) };

b

export default connect(mapStateToProps)(Users);

Exercise

 Why are the users reloading when | change a card?
* Nothing changed with the users!

 Can you iImplement a selector to stop this tomfoolery?

An aside: Implementing
Undo and Redo

Holding onto the past,
present, and future.

“Let the past die. Kill it, if
you have to. That's the only
way to become what you are

meant to be.”

- Kylo Ren

ADD NEW ITEM) {
action.payload;

1f (action.type
const { item }
return {
past: [present, ...past],
present: [... present, item],
future,

&
}

if (action.type == UNDO_ITEM ACTION) {
if (!past.length) return state;
const newFuture = [present, ... future];
const [newPresent, ...newPast] = past;
return {
past: newPast,
present: newPresent,
future: newFuture

}

}

if (action.type == REDO_ITEM_ACTION) f{
if (!future.length) return state;
const [newPresent, ...newFuture] = future;
const newPast = [present, ...past];

return 1
past: newPast,
present: newPresent,
future: newFuture

)
)

Chapter Five

Redux Thunk

Thunk?

thunk (noun): a function
returned from another function.

function definitelyNotAThunk() {
return function aThunk() {
console.log('Hello, I am a thunk.’);
;

)

The major idea behind a thunk is
that Its code to be executed later.

Here Is the thing with Redux—It
only accepts objects as actions.

redux-thunk is a middleware that allows
us to dispatch a function (thunk) now
that will dispatch a legit action later.

export const getAllItems = () = ({
type: UPDATE _ALL_ITEMS,

1tems,

F);

export const getAllItems = () = {

return dispatch = 1
Api.getAll().then(items = {
dispatch(4

type: UPDATE _ALL_ITEMS,
1tems,

¥

I
I

b

000 Star Wars Characters

C @ localhost:3000

Star Wars Autocomplete

L ando Calrissian

Rugor Nass

Poggle the Lesser

ORONC @ React App X -4

C @ https://2w7km.codesandbox.io

Tweet Stream

Fetch Tweets

Cyber Solutions-71 writes:

RT @codewallblog: Installing & Using MyCli on Windows - https://t.co/Y81mAsmsty #Developer #node #nodejs #coding #js #angularjs #vuejs #r...

A programmer writes:

Curso de VuedS 2 = https://t.co/eZS1Z1vvY0 #vuejs #javascript https://t.co/ASFYWYkuLc

PhoenixCodes writes:

RT @CODE_THAT_THANG: #Day063 of @careerdevs #365DaysOfCode Solved an algorithm where | was tasked to sum all prime numbers. Take a look and...

xael bot writes:

Exercise

 Implement Redux Thunk in order to dispatch a function
that will in tern dispatch an action when we hear back
from the API.

 Your humble Instructor is not responsible for whatever
tweets have the word JavaScript in them.

Chapter Seven

Redux Observable

The action creators in redux-thunk
aren’t pure and this can make testing
tricky.

it('fetches items from the database', () = {
const itemsInDatabase = {
items: [{ id: 1, value: 'Cheese', packed: false }],

};

fetchMock.getOnce('/items', {
body: 1temsInDatabase,
headers: { 'content-type': 'application/json' },

});

const store = mockStore({ items: [] }):

return store.dispatch(actions.getItems()).then(() = {
expect(store.getItems()).toEqual({
type: GET_ALL_ITEMS,
1tems: 1temsInDatabase

});
});
});

It would be great If we could
separate out the dispatch of actions
from the talking to the database.

The tricky part is that we need the
Information to dispatch the action
that's going to the store.

And now: Just enough RxJS
to get yourself in trouble.

What is an observable?

e A stream of zero, one, or more values.
e The stream comes in over a series of time.

e The stream Is cancelable.

What i1s Redux Observable?

e Redux Observable is a combination of RxJS and Redux.

» Side effect managment using "epics."

What is an epic? @®

e Afunction that takes a stream of all actions dispatched
and returns a stream of new actions to dispatch.

> EPIC —

< e 6_(7@60\ C
ASYWC

Lon

—) Recddux
Aq-i-o'a/)

The Basic Example

const pingPong = (:) = {

if (action.type = ‘PING’) {
return {

type: ‘PONG’

b

}

}s

The Basic Example

const pingPongEpic = (:) =
action$.ofType(‘PING')
.map(= ({ type: ‘PONG’ }));

000 Star Wars Characters

C @ localhost:3000

Star Wars Autocomplete

L ando Calrissian

Rugor Nass

Poggle the Lesser

ORONC @ React App X -4

C @ https://2w7km.codesandbox.io

Tweet Stream

Fetch Tweets

Cyber Solutions-71 writes:

RT @codewallblog: Installing & Using MyCli on Windows - https://t.co/Y81mAsmsty #Developer #node #nodejs #coding #js #angularjs #vuejs #r...

A programmer writes:

Curso de VuedS 2 = https://t.co/eZS1Z1vvY0 #vuejs #javascript https://t.co/ASFYWYkuLc

PhoenixCodes writes:

RT @CODE_THAT_THANG: #Day063 of @careerdevs #365DaysOfCode Solved an algorithm where | was tasked to sum all prime numbers. Take a look and...

xael bot writes:

Exercise

 Implement Redux Observable in order to dispatch a
function that will in tern dispatch an action when we hear
back from the API.

* Again—Your handsome instructor is not responsible for
whatever tweets have the word JavaScript in them.

Lodash for async. — Ben
Lesh, probably.

Chapter Eight

MobX

An Aside: Computed
Properties

class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

}
}

class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

fullName() {
return ~${this.firstName} ${this.lastName} ;

}
)

const person = new Person('Grace', 'Hopper');

person.firstName; // 'Grace’
person.lastName; // 'Hopper'
person.fullName; // function fullName() {..}

const person = new Person('Grace', 'Hopper');

person.firstName; // 'Grace'
person.lastName; // 'Hopper'
person.fullName(); // 'Grace Hopper'

Ugh. &

class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

get fullName() {
return ~${this.firstName} ${this.lastName} ;

}
)

const person = new Person('Grace', 'Hopper');

person.firstName; // 'Grace’
person.lastName; // 'Hopper'
person.fullName; // 'Grace Hopper'

Much Better! &

Getters and setters may seem like
some fancy new magic, but they've
been around since ES5.

Not as as elegant, but it'll do.

function Person(:) {
this.firstName = firstName;
this.lastName = lastName;

}
.defineProperty(.prototype, 'fullName', {
get: function () {
return this.firstName + ' ' + this.lastName;
}

});

An Aside: Decorators

Effectively decorators provide a
syntactic sugar for higher-order
functions.

Target Key

Object.defineProperty(Person.prototype, 'fullName', {
enumerable: false,
writable: false,
Descript get: function () {
return this.firstName +
}

});

+ this.lastName;

function decoratorName(target, key, descriptor) {

/] ..
}

function readonly(target, key, descriptor) f{
descriptor.writable = false;
return descriptor;

}

class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

areadonly get fullName() {
return ~${this.firstName} ${this.lastName} ;

}
)

npm 1nstall core-decorators

Qautobind
adeprecate
areadonly
amemolze
adebounce
aprofile

& C' & NPM, Inc. [US] | https://www.npmjs.com/package/lodash-decorators w © H

New Programs Makers npm Enterprise features pricing documentation support
“ p m find packages Q sign up or login @

Painless code sharing. npm Orgs help your team discover, share, and reuse code. Create a free org »

IOdaSh-deCOI‘atOrS m npm i lodash-decorators

Decorators using lodash functions. View the APl docs for more in depth documentation. how? learn more
npm version

Install
¢ Polyfills
Usage

steelsojka published a week ago
4.5.0 is the latest of 64 releases

github.com/steelsojka/lodash-decorators
Decorators

e Example MIT
Partials
o Example Collaborators list

Composition

e Example
Instance Decorators
Mixin
Stats

e Example

Attempt 806 downloads in the last day

e Example
Bind 10,919 downloads in the last week

e Example 26,092 downloads in the last month

e Example

A big problem with decorators
Is that they aren’t exactly “real.”

Okay, so... MobX

Imagine If you could simply
change your objects.

A primary tenet of using MobX is that you can
store state in a simple data structure and allow
the library to care of keeping everything up to
date.

http://bit.lv/super-basic-mobx

http://bit.ly/super-basic-mobx

Ridiculously simplified, not real code™

const onChange = (oldValue, newValue) = {
// Tell MobX that this value has changed.

}

const observable = (value) = {
return {
get() { return value; },
set(newValue) {
onChange(this.get(), newValue);
value = newValue;

}
}
}

This code...

class Person {
aobservable firstName;
aobservable lastName;

constructor(firstName, lastName) {
this.firstName;
this.lastName;

)
)

..I1s effectively equivalent.

function Person (firstName, lastName) f{
this.firstName;
this.lastName;

extendObservable(this, {
firstName: firstName,
lastName: LastName

});
}

const extendObservable = (target, source) = {
source.keys().forEach(key = {
const wrappedInObservable = observable(sourcel[key]);
Object.defineProperty(target, key, {
set: value.set.
get: value.get
¥
¥
b

// This 1s the @observable decorator
const observable = (object) = {
return extendObservable(object, object);

b

Four-1sh major concepts

e Observable state

e Actions

e Derivations

« Computed properties

e Reactions

Computed properties update their
value based on observable data.

Reactions produce side
effects.

class PizzaCalculator {
numberOfPeople = 0;
slicesPerPerson = 2;
slicesPerPie = 8;

get slicesNeeded() {
return this.numberOfPeople * this.slicesPerPerson;

}

get piesNeeded() {
return Math.ceil(this.slicesNeeded / this.slicesPerPie);

}

addGuest() { this.numberOfPeople++; }

import { action, observable, computed } from 'mobx';

class PizzaCalculator {
aobservable numberOfPeople = 0;

aobservable slicesPerPerson = 2;

aobservable slicesPerPie = 8;

acomputed get slicesNeeded() {
console.log('Getting slices needed');
return this.numberOfPeople * this.slicesPerPerson;

}

acomputed get piesNeeded() {
console.log('Getting pies needed');
return Math.ceil(this.slicesNeeded / this.slicesPerPie);

}

Raction addGuest() {
this.numberOfPeople++;
}

}

You can also pass most common data structures
to MobX.

e Objects — observable({})
 Arrays — observable([])

« Maps — observable(new Map())

Caution: If you add properties to an object
after you pass it to observable(), those
new properties will not be observed.

Use a Map() if you're going
to be adding keys later on.

MobX with React

aobserver class Counter extends Component f{

render(

) 1

const { counter }
return (
<section>

<
<
<
<

n1>Count:
outton onCl
outton onCl

outton onC

</section>

);

= this.props;

{counter.countf</h1>

1cC
1cC

lic

<={counter.increment}>Increment</button>
<={counter.decrement }>Decrement</button>

<={counter.reset}>Reset</button>

const Counter
<section>
n1>Co

<
<
<
<

DL
DL

DL

tto
tto

tton

</sectio

));

unt

1 0
1 0
O

N>

= observer(({ counter }) = (

. {co
nClic
nClic

nClic

unter.countf</hi>

<=1{colL
<={colL

<={colL

nter.increment}t>Increment</button>
nter.decrement}>Decrement</button>

nter.reset}>Reset</button>

class ContainerComponent extends Component () {

componentDidMount() {
this.stopListening = autorun(() = this.render());

}

componentWillUnmount() {
this.stopListening();

}

render() { .. }
}

import { Provider } from 'mobx-react';

import ItemStore from './store/ItemStore';
import Application from './components/Application’;

const itemStore = new ItemStore():

ReactDOM. render(
<Provider itemStore={itemStore}>
<Application />
</Provider>,
document.getElementById('root'),

);

ninject('itemStore')
class NewItem extends Component {
state = { .. };

handleChange = (event) = { ..}

handleSubmit (event) = { ..}

render() { .. }
}

const UnpackedItems = inject('itemStore')(
observer(({ itemStore }) = (
<Items
title="Unpacked Items"
items={itemStore.filteredUnpackedItems}
total={itemStore.unpackedItemsLength}
>
<Filter
value={itemStore.unpackedItemsFilter}
onChange={itemStore.updateUnpackedItemsFilter}
/>
</Items>
)),
);

Exercise

I'll implement the basic functionality for adding and
removing items.

Then you'll implement toggling.
Then I'll iImplement filtering.

Then you’ll Implement marking all as unpacked.

Exercise

e Whoa, It's another exercise!

e This time i1t will be the same flow as last time, but we're
going to add asynchronous calls to the server into the mix.

Epilogue

Closing Thoughts

MobX versus Redux

MebX-versus Redux
Dependency Graphs versus Immutable
State Trees

Advantages of Dependency Graphs

e Easy to update
e There is a graph structure: nodes can refer to each other
e Actions are simpler and co-located with the data

« Reference by identity

Advantages of Immutable State Trees

 Snapshots are cheap and easy
e [t's a simple tree structure
* You can serialize the entire tree

 Reference by state

®®® Q mobxjs/mobx-state-tree: Opir X \\\‘\\ \

= C' @& GitHub, Inc. [US] | https://github.com/mobxjs/mobx-state-tree

README.md

‘e

@ mobx-state-tree

Opinionated, transactional, MobX powered state container combining the best features of the immutable and mutable
world for an optimal DX

npm package [1.1.0 § build passing | coverage [95%

Mobx and MST are amazing pieces of software, for me it is the missing brick when you build React based apps.
Thanks for the great work!

Nicolas Galle full post

Introduction blog post The curious case of MobX state tree

Contents

Installation

Getting Started

Talks & blogs
Philosophy & Overview
Examples

Concepts
o Trees, types and state

o Creating models

items: [
{ id: 1, value: "Storm Trooper action figure", owner: 2 },
{ id: 2, value: "Yoga mat", owner: 1 },
{ id: 4, value: "MacBook", owner: 3 },
{ id: 5, value: "iPhone", owner: 1 },
{ id: 7, value: "Melatonin", owner: 3 }
1,
owners: |
{ id: 1, name: "Logan", items: [2, 5] },
{ id: 2, name: "Wes", items: [1] },
{ id: 3, name: "Steve", items: [4, 7] }
]

}

1tems:
1: 4
2: 4
Lo 4
5: 4
7: 4
b
owners:
1: 4
2: 4
3: 4
}

-

-

-

N O BN -

N

value:
value:
value:
value:
value:

name :
name :
name :

"Storm Trooper action figure", owner: 2]
"Yoga mat", owner: 1 },

"MacBook", owner: 3 1},

"iPhone", owner: 1 },

"Melatonin", owner: 3 }

"Logan", items: [2, 5] },
"Wes", items: [1] },
"Steve", items: [4, 7] }

Where can you take this
from here?

Could you implement the undo/
redo pattern outside of Redux?

Would an action/reducer
pattern be helpful in MobX?

Would async/awalt make a
suitable replacement for thunks or
observables?

Can you implement undo
with API requests?

You now have a good sense
of the lay o' the land.

Questions?

