
GETTING INTO JS
KYLE SIMPSON GETIFY@GMAIL.COM

https://github.com/getify/You-Dont-Know-JS

https://github.com/getify/You-Dont-Know-JS

Course Overview
• Programming Primer (in JS)  

• Three Pillars of JS: 

• Types / Coercion
• Scope / Closures
• this / Prototypes

...but before we begin...

Programming Primer (in JS)
• Values
• Operations
• Variables
• Expressions and Statements
• Decisions
• Loops
• Functions

Values

Operations

Variables

Expressions and 
Statements

Decisions

Loops

Functions

Chapter 1

Three Pillars of JS
1. Types / Coercion
2. Scope / Closures
3. this / Prototypes

Types / Coercion
• Primitive Types
• Converting Types
• Checking Equality

Primitive Types

"In JavaScript, everything
is an object."

false

• undefined
• string
• number
• boolean
• object
• symbol

Primitive Types

• null?
• function?
• array?

In JavaScript, variables
don't have types,

values do.

Primitive Types: typeof

Primitive Types: typeof

NaN (“not a number”)

NaN

• String()
• Number()
• Boolean()

Fundamental Objects

• Object()
• Array()
• Function()
• Date()
• RegExp()
• Error()

Use new: Don't use new:

Fundamental Objects

Converting Types

The way to convert from one
type to another: coercion

Coercion: string concatenation (number to string)

Coercion: string concatenation (number to string)

Number + Number = Number
Number + String = String

String + Number = String

String + String = String

Coercion: string to number

TruthyFalsy
“foo”

23
{ a:1 }
[1,3]
true

function(){..} 
...

“”
0, -0
null
NaN
false

undefined

Coercion: boolean

Coercion: boolean

Coercion: boolean

Coercion: implicit can be good (sometimes)

A quality JS program embraces
coercions, making sure the types
involved in every operation are

clear.

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

Useful: when the reader is
focused on what's important
Dangerous: when the reader
can't tell what will happen

Better: when the reader
understands the code

Checking Equality 
== vs. ===

Loose Equality vs. Strict Equality

?
== checks value (loose)

=== checks value and type (strict)

== checks value (loose)

=== checks value and type (strict)

Coercive Equality vs. Non-Coercive Equality

== allows coercion (types different)

=== disallows coercion (types same)

Coercive Equality: == and ===

Coercive Equality: null == undefined

Coercive Equality: helpful?

Like every other operation, is
coercion helpful in an equality

comparison or not?

== is not about comparisons
with unknown types

== is about comparisons
with known type(s), optionally
where conversions are helpful

JavaScript has a (dynamic) type
system, which uses various

forms of coercion for value type
conversion, including equality

comparisons

You simply cannot write quality
JS programs without knowing

the types involved in your
operations.

Scope / Closures
• Nested Scope
• Closure

Scope: where to look
for things

Scope
Suzy

React

Scope

undefined
vs.

undeclared

Function Expressions

Named Function Expressions

Arrow Functions?

Function Scoping: IIFE
http://benalman.com/news/2010/11/immediately-invoked-function-expression/

http://benalman.com/news/2010/11/immediately-invoked-function-expression/

Block Scoping

Block Scoping: encapsulation

Instead of an IIFE?

Block Scoping: encapsulation

Block Scoping: let

Block Scoping: let + var

Block Scoping: explicit let block

Closure

Closure

Closure is when a function “remembers” the
variables outside of it, even if you pass that

function elsewhere.

Closure

Closure

this / Prototypes
• this
• Prototypes
• class { }

this

A function's this references the execution
context for that call, determined entirely by
how the function was called.

this: dynamic context

A this-aware function can thus have a
different context each time it's called, which
makes it more flexible & reusable.

this: dynamic context

this: dynamic context

this: dynamic context

Prototypes

Prototypes: as "classes"

ES6

class { }

ES6 class

Chapter 2

The best way to learn JS is to
get in and write it!

GETTING INTO JS

THANKS!!!!

KYLE SIMPSON GETIFY@GMAIL.COM

