
Hard Parts: Servers &
Node.js

The power of Node

— Most powerful technology in web development
to emerge in 10 years

— Enables applications that can handle millions
of users without blocking

— From simple webpages to largest scaled
applications, to Windows/Mac desktop apps
(with Electron), and hardware (embedded
systems)

— Allows us to build entire applications end-to-
end in one language - JavaScript

From client side development to full stack
development

Our users open twitter.com - they need
code and data to load twitter.com on
their computers

— What code/data do they need to load?

— Where’s the code/data coming from?

Servers are the behind-the-scenes of all web
applications - where our client-side code/data
comes from

Computer connected to the internet - a permanent store
of code/data, always on, ready to receive messages over
the internet from users requesting code/data and send it
back

— How’s this computer know what to send back?

— What languages can we use to write these instructions?

But how can we access these inbound messages as
developers and send code/data back in response?

Sending the right data back requires using
multiple features of the computer

— Network socket - Receive and send back messages over
the internet

— Filesystem - that’s where the html/css/javascript code
is stored in files

— CPU - for cryptography and optimizing hashing
passwords

— Kernel - I/O management

Our dream - be able to use JavaScript to control this
computer because (1) we know JavaScript and (2) it has
some really nice design decisions

Each programming language (PHP, Ruby, C++,
JavaScript) have different levels of ability to
interact with these features directly

C++ has many features that let it directly
interact with the OS directly

JavaScript does not! So it has to work with C+
+ to control these computer features. What is
this combination known as? ... Node.js

JS -> Node -> Computer feature (e.g.
network, file system)

Rewind. We had better understand JavaScript
to understand Node.js then

It’s a language that does 3 things (and 1
involves a lot of help from C++)

1. Saves data and functionality (code)

2. Uses that data by running functionality
(code) on it

3. Has a ton of built-in labels that trigger
Node features that are built in C++ to use
our computer’s internals

Let’s see the 2 things that JS does by itself -
saving and using data

let num = 3;
// 1. Save a function (code to run, parameters awaiting inputs)
function multiplyBy2 (inputNumber){
 const result = inputNumber*2;
 return result;
}

// 2a. Call/run/invoke/execute a function (with parens)
// and 2b. insert an input (an argument)
const output = multiplyBy2(num);
const newOutput = multiplyBy2(10);

So let’s see JavaScript other talent - built-in
labels that trigger Node features

We can set up, with a JavaScript label, a
Node.js feature (and so computer internals)
to wait for requests for html/css/js/tweets
from our users

How? The most powerful built-in Node
feature of all: http (and its associated built-
in label in JS - also http conveniently)

Using http feature of Node to set up an open
socket

const server = http.createServer()
server.listen(80)

Inbound web request -> run code to send
back message

if inbound message -> send back
data

But at what moment?
!

Node auto-runs the code (function) for us
when a request arrives from a user

function doOnIncoming(incomingData, functionsToSetOutgoingData){
 functionsToSetOutgoingData.end("Welcome to Twitter!")
}

const server = http.createServer(doOnIncoming)
server.listen(80)

1. We don’t know when the inbound request would
come - we have to rely on Node to trigger JS
code to run

2. JavaScript is single-threaded & synchronous. All
slow work (e.g. speaking to a database) is done
by Node in the background (more on this later)

Two parts to calling a function - executing its
code and inserting input (arguments)

In multiplyBy2(3) the argument is 3 and we, the
developer, inserted it

Node not only will auto-run our function at the right
moment, it will also automatically insert whatever the
relevant data is as the additional argument (input)

Sometimes it will even insert a set of functions in an
object (as an argument) which give us direct access to
the message (in Node) being sent back to the user and
allows us to add data to that message

And that’s exactly what Node does with its
http feature

Node inserts the arguments (inputs) automatically in the function it
auto-runs:

1. ‘Inbound object’ - all data from the inbound (request) message

2. ‘Outbound object’ - functions to be used to set outbound
(response) message data

These objects (the arguments to the auto-run function) aren’t given
labels by Node. So how do we access them? We do so with
parameters (placeholders).

We must make sure to format the function Node auto-runs the way
Node expects (use docs)

Code again

function doOnIncoming(incomingData, functionsToSetOutgoingData){
 functionsToSetOutgoingData.end("Welcome to Twitter!")
}

const server = http.createServer(doOnIncoming)
server.listen(80)

People often end up using req and res for the
parameters...

Let’s get more personalized with what we send
back to our user from our server

By writing code to investigate the inbound
message to see exactly what she’s asked for

Our user, needs a specific tweet (tweet 3)
back. How does their browser tell us that?

Messages are sent in HTTP format - The
‘protocol’ for browser-server interaction

HTTP message: Request line (url, method),
Headers, Body (optional)

const tweets = ["Hi", "
!

", "Hello", "
"

", "
#

"]
function doOnIncoming(incomingData, functionsToSetOutgoingData){
 const tweetNeeded = incomingData.url.slice(8)-1
 functionsToSetOutgoingData.end(tweets[tweetNeeded])
}

const server = http.createServer(doOnIncoming)
server.listen(80)

Our return message is also in HTTP format

We can use the body to send the data and
headers to send important metadata

In the headers we can include info on the
format of the data being sent back - e.g. it’s
html so to load it as a webpage

Getting access to Node’s built in features with
require

We have to tell Node we want to have access
to each of its C++ features independently -
we get a built-in function to do this
require

const http = require(‘http’);

How do we start Javascript off to do all this?

1. Write the code (VSCode et al)

2. Load it into Node and run it (have to load
in using the terminal interface)

3. Need to reload our code with Node every
time we make a change so nodemon

Do we need an always-on computer in our
house to run a server?

1. Write code on your computer

2. SSH into someone else’s computer (one of
AWS’s)

3. Set up DNS to match domain name to
right IP

But what about testing our server?

Do you need to load the code to be run on an
AWS computer?

OS developers included the loopback feature
with localhost as the pseudo-domain

This is what you will be doing in the pair-
programming

Pair-programming

In server side development we get errors

Understandable - we’re interacting with
others’ computers over the internet - there’s
lots of issues that could arise

How can we handle this? We need to
understand our background Node http server
feature better

What triggers the doOnIncoming function to
run? Events

— http.createServer(doOnIncoming)
is actually a one-line version of setting up
the server that will auto-release (‘emit’)
events (‘messages in Node’) that trigger a
function to auto-run if we’ve set one

— These events are preset on http: ‘request’,
‘error’

Node will automatically send out the
appropriate event depending on what it gets
from the computer internals (http message or
error

!

)

function doOnIncoming(incomingData, functionsToSetOutgoingData){
 functionsToSetOutgoingData.end("Welcome to Twitter")
}

function doOnError(infoOnError){
 console.error(infoOnError)
}

const server = http.createServer();
server.listen(80)

server.on('request', doOnIncoming)
server.on('clientError', doOnError)

We have much of our twitter app set up now -
handling, inspecting and responding to these
messages (‘requests’) is the core of our app, of
Node, and of servers

— But, Node can do even more. We have an archive of
tweets stored in a huge file (1.5GB)

— Unfortunately they’re saved on our computer, not in
our little JavaScript-specific data store (JavaScript
memory)

— Could we load them into JavaScript to run a function
that removes bad tweets?

— We can use fs to do so but there might be some issues
with a file that large

Importing our tweets with fs

function cleanTweets (tweetsToClean){
 // code that removes bad tweets
}

function useImportedtweets(errorData, data){
 const cleanedTweetsJson = cleanTweets(data);
 const tweetsObj = JSON.parse(cleanedTweetsJson)
 console.log(tweetsObj.tweet2)
}

fs.readFile('./tweets.json', useImportedtweets)

— Every file has a ‘path’ (a link - like a domestic
url)

— JSON is a javascript-ready data format

What if Node used the ‘event’ (message-
broadcasting) pattern to send out a message
(‘event’) each time a sufficient batch of the
json datahad been loaded in

And at each point, take that data and start cleaning it - in
batches

let cleanedTweets = "";

function cleanTweets (tweetsToClean){
 // algorithm to remove bad tweets from `tweetsToClean`
}

function doOnNewBatch(data){
 cleanedTweets += cleanTweets(data);
}

const accessTweetsArchive = fs.createReadStream('./tweetsArchive.json')

accessTweetsArchive.on('data', doOnNewBatch);

Introducing Event loop and Callback Queue

The call stack, event loop and callback queue
in Node

— Call stack: JavaScript keeps track of what function
is being run and where it was run from. Whenever
a function is to be run, it’s added to the call stack

— Callback queue - any functions delayed from
running (and run automatically by Node) are
added to the callback queue when the background
Node task has completed (or there’s been some
activity like a request)

— Event loop - Determines what function/code to
run next from the queue(s)

Bringing it all together

But Node is most powerful because of the
automated JS function execution triggered by
Node at just the right moment.

This means we don’t have to wait in JS for the
right moment to run code and block any other
code running

But it also means we better know intimately
how Node decides what to automatically
execute at what moment...

The event loop is very strict. What rules does it
set for what code to run next and when it may
run?

function useImportedtweets(errorData, data){
 const tweets = JSON.parse(data)
 console.log(tweets.tweet1)
}

function immediately(){console.log("Run me last

!

")}

function printHello(){console.log("Hello")}

function blockFor500ms(){
 // Block JS thread DIRECTLY for 500 ms
 // With e.g. a for loop with 5m elements
}

setTimeout(printHello,0)

fs.readFile('./tweets.json', useImportedtweets)

blockFor500ms()

console.log("Me first")
setImmediate(immediately)

Rules for the automatic execution of the JS
code by Node

1. Hold each deferred function in one of the
task queues when the Node background API
‘completes’

2. Add the function to the Call stack (i.e.
execute the function) ONLY when the call
stack is totally empty (Have the Event Loop
check this condition)

3. Prioritize functions in Timer ‘queue’ over I/
O queue, over setImmediate (‘check’) queue

Fin

