








The 5 capacities we look for in candidates

1. Analytical problem solving with code

2. Technical communication (can I implement 
your approach just from your explanation)

3. Engineering best practices and approach 
(Debugging, code structure, patience and 
reference to documentation)

4. Non-technical communication (empathetic 
and thoughtful communication)

5. Language and computer science experience



Our expectations

— Support each other - engineering 
empathy is the critical value at Codesmith

— Work hard, Work smart

— Thoughtful communication



Frontend Masters - JavaScript the Hard Parts

1. Foundations of JavaScript
2. Asynchronous JavaScript (callbacks, 

promises)

3. Iterators

4. Generators & Async/await



Principles of JavaScript

In JSHP we start with a set of fundamental 
principles

These tools will enable us to problem solve and 
communicate almost any scenario in JavaScript

— We'll start with an essential approach to get 
ourselves up to a shared level of 
understanding

— This approach will help us with the hard parts 
to come



What happens when javascript executes (runs) 
my code?

const num = 3;
function multiplyBy2 (inputNumber){
  const result = inputNumber*2;
  return result;
}
const name = "Will"

As soon as we start running our code, we create a global 
execution context

— Thread of execution (parsing and executing the code line 
after line)

— Live memory of variables with data (known as a Global 
Variable Environment)



Running/calling/invoking a function

This is not the same as defining a function

const num = 3;
function multiplyBy2 (inputNumber){
  const result = inputNumber*2;
  return result;
}

const output = multiplyBy2(4);
const newOutput = multiplyBy2(10);

When you execute a function you create a new execution context comprising:

1. The thread of execution (we go through the code in the function line by 
line)

2. A local memory ('Variable environment') where anything defined in the 
function is stored



We keep track of the functions being called in 
JavaScript with a Call stack

Tracks which execution context we are in - 
that is, what function is currently being run 
and where to return to after an execution 
context is popped off the stack

One global execution context, a new 
function execution context for every time we 
run a function



Frontend Masters - JavaScript the Hard Parts

1. Foundations of JavaScript

2. Asynchronous JavaScript (callbacks, 
promises)

3. Iterators

4. Generators



Asynchronicity is the backbone of modern web 
development in JavaScript

JavaScript is single threaded (one command executing at a 
time) and has a synchronous execution model (each line is 
executed in order the code appears)

So what if we need to wait some time before we can 
execute certain bits of code? Perhaps we need to wait on 
fresh data from an API/server request or for a timer to 
complete and then execute our code

We have a conundrum - a tension between wanting to 
delay some code execution but not wanting to block 
the thread from any further code running while we wait



Solution 1

function display(data){
    console.log(data)
} 

const dataFromAPI = fetchAndWait('https://twitter.com/will/tweets/1')

//... user can do NOTHING here !
//... could be 300ms, could be half a second
// they're just clicking and getting nothing

display(dataFromAPI)

console.log(“Me later!”);



Problems

— Fundamentally untenable - blocks our 
single javascript thread from running any 
further code while the task completes

Benefits

— It’s easy to reason about



Goals

1. Be able to do tasks that take a long time to 
complete e.g. getting data from the server

2. Continue running our JavaScript code line 
by line without one long task blocking 
further JavaScript executing

3. When our slow task completes, we should 
be able to run functionality knowing that 
task is done and data is ready!

Conundrum !



Solution 2 - Introducing Web Browser APIs/
Node background threads

function printHello(){
    console.log(“Hello”);
}

setTimeout(printHello,1000);

console.log(“Me first!”);



We’re interacting with a world outside of 
JavaScript now - so we need rules

function printHello(){
    console.log(“Hello”);
}

function blockFor1Sec(){
    //blocks in the JavaScript thread for 1 second
}

setTimeout(printHello,0);

blockFor1Sec()

console.log(“Me first!”);



Problems

— No problems!

— Our response data is only available in the callback 
function - Callback hell

— Maybe it feels a little odd to think of passing a function 
into another function only for it to run much later

Benefits

— Super explicit once you understand how it works 
under-the-hood



Pair Programming

Answer these:

— I know what a variable is

— I've created a function before

— I've added a CSS style before

— I have implemented a sort algorithm (bubble, merge etc)

— I can add a method to an object’s prototype

— I understand the event loop in JavaScript

— I understand 'callback functions'

— I’ve implemented filter from scratch

— I can handle collisions in hash tables



Challenges

Asynchronicity & Promises: csbin.io/
promises

Iterators, Generators & Async/await: 
csbin.io/iterators



Introducing the readability enhancer - 
Promises

— Special objects built into JavaScript that get returned 
immediately when we make a call to a web browser API/feature 
(e.g. fetch) that’s set up to return promises (not all are)

— Promises act as a placeholder for the data we hope to get back 
from the web browser feature’s background work

— We also attach the functionality we want to defer running until 
that background work is done (using the built in .then method)

— Promise objects will automatically trigger that functionality to 
run 

— The value returned from the web browser feature’s work 
(e.g. the returned data from the server using fetch) will be 
that function’s input/argument 



Solution 3 - Using two-pronged ‘facade’ 
functions that both initiate background web 
browser work and return a placeholder object 
(promise) immediately in JavaScript

function display(data){
    console.log(data)
} 

const futureData = fetch('https://twitter.com/will/tweets/1')

futureData.then(display); // Attaches display functionality

console.log(“Me first!”);



But we need to know how our promise-
deferred functionality gets back into JavaScript 
to be run

function display(data){console.log(data)} 
function printHello(){console.log(“Hello”);}
function blockFor300ms(){/* blocks js thread for 300ms with long for loop */} 

setTimeout(printHello, 0);

const futureData = fetch('https://twitter.com/will/tweets/1')
futureData.then(display)

blockFor300ms()

// Which will run first?

console.log(“Me first!”);

We need a way of queuing up all this 
deferred functionality



Problems

— 99% of developers have no idea how 
they’re working under the hood

— Debugging becomes super-hard

Benefits

— Cleaner readable style with pseudo-
synchronous style code

— Nice error handling process



We have rules for the execution of our 
asynchronously delayed code

1. Hold each promise-deferred functions in a 
microtask queue and each non-promise deferred 
function in a task queue (callback queue) when 
the API ‘completes’

2. Add the function to the Call stack (i.e. execute 
the function) ONLY when the call stack is totally 
empty (Have the Event Loop check this 
condition)

3. Prioritize tasks (callbacks) in the microtask queue 
over the regular task queue



Promises, Web APIs, the Callback & 
Microtask Queues and Event loop allow us to 
defer our actions until the ‘work’ (an API 
request, timer etc) is completed and 
continue running our code line by line in the 
meantime

Asynchronous JavaScript 
is the backbone of the 
modern web - letting us 
build fast ‘non-blocking’ 



Frontend Masters - JavaScript the Hard Parts

1. Foundations of JavaScript

2. Asynchronous JavaScript (callbacks, 
promises)

3. Iterators
4. Generators & Async/await



Iterators

We regularly have lists or collections or data 
where we want to go through each item and do 
something to each element

const numbers = [4,5,6]

for (let i = 0; i < numbers.length; i++){
  console.log(numbers[i])
} 

We’re going to discover there’s a new beautiful 
way of thinking about using each element one-by-
one



Programs store data and apply functionality to 
it. But there are two parts to applying 
functions to collections of data

1. The process of accessing each element

2. What we want to do to each element

Iterators automate the accessing of each element - so we can focus on what to do to each 
element - and make it available to us in a smooth way

Imagine if we could create a function that stored numbers and each time we ran the function it 
would return out an element (the next one) from numbers. NOTE: It’d have to remember which 
element was next up somehow

But this would let us think of our array/list as a ‘stream’/flow of data with our function returning 
the next element from our ‘stream’ - this makes our code more readable and more functional

But it starts with us returning a function from another function



Functions can be returned from other 
functions in JavaScript!

function createNewFunction() {
  function add2 (num){
    return num+2;
  }
  return add2;
}

const newFunction = createNewFunction()

const result = newFunction(3)

How can we run/call add2 now? Outside of 
createNewFunction?



We want to create a function that holds both 
our array, the position we are currently at in 
our ‘stream’ of elements and has the ability to 
return the next element

function createFunction(array){
  let i = 0
  function inner(){
    const element = array[i]
    i++
    return element
  }
  return inner
}

const returnNextElement = createFunction([4,5,6])

How can we access the first element of our list?



By calling the returnNextElement

function createFunction(array){
  let i = 0
  function inner(){
    const element = array[i];
    i++;
    return element;
  }
  return inner
}

const returnNextElement = createFunction([4,5,6])
const element1 = returnNextElement()
const element2 = returnNextElement()



The bond

— When the function inner is defined, it gets a bond to the 
surrounding Local Memory in which it has been defined

— When we return out inner, that surrounding live data is 
returned out too - attached on the ‘back’ of the function 
definition itself (which we now give a new global label 
returnNextElement)

— When we call returnNextElement and don’t find 
array or i in the immediate execution context, we look 
into the function definition’s ‘backpack’ of persistent live 
data

— The ‘backpack’ is officially known as the C.O.V.E. or 
‘closure’



returnNextElement has everything we 
need all bundled up in it

1. Our underlying array itself

2. The position we are currently at in our ‘stream’ of 
elements 

3. The ability to return the next element

This relies completely on the special property of 
functions in javascript that when they are born inside 
other functions and returned - they get a backpack 
(closure)

What is the posh name for returnNextElement?



So iterators turn our data into ‘streams’ of 
actual values we can access one after another.

Now we have functions that hold our underlying array, the 
position we’re currently at in the array, and return out the 
next item in the ‘stream’ of elements from our array when run

This lets us have for loops that show us the element itself in 
the body on each loop and more deeply allows us to rethink 
arrays as flows of elements themselves which we can interact 
with by calling a function that switches that flow on to give 
us our next element

We have truly ‘decoupled’ the process of accessing each 
element from what we want to do to each element



Frontend Masters - JavaScript the Hard Parts

1. Foundations of JavaScript

2. Asynchronous JavaScript (callbacks, 
promises)

3. Iterators

4. Generators & Async/await



JavaScript’s built in iterators are actually 
objects with a next method that when called 
returns the next element from the ‘stream’/
flow - so let’s restructure slightly

function createFlow(array){
  let i = 0
  const inner = {next : 
      function(){
        const element = array[i]
        i++
        return element
      }
  }
  return inner
}

const returnNextElement = createFlow([4,5,6])
const element1 = returnNextElement.next()
const element2 = returnNextElement.next()

And the built in iterators actually produce the next element in the format: 
{value: 4} !



Once we start thinking of our data as flows 
(where we can pick of an element one-by-one) 
we can rethink how we produce those flows - 
JavaScript now lets us produce the flows using 
a function !

function *createFlow(){
  yield 4
  yield 5
  yield 6
}

const returnNextElement = createFlow()
const element1 = returnNextElement.next()
const element2 = returnNextElement.next()

What do we hope returnNextElement.next() will 
return? But how?



This allows us to dynamically set what data 
flows to us (when we run 
returnNextElement’s function)

function *createFlow(){
  const num = 10
  const newNum = yield num
  yield 5 + newNum
  yield 6
}

const returnNextElement = createFlow()
const element1 = returnNextElement.next() // 10
const element2 = returnNextElement.next(2) // 7



returnNextElement is a special object (a 
generator object) that when its next method 
is run starts (or continues) running createFlow 
until it hits yield and returns out the value 
being ‘yielded’

function *createFlow(){
  const num = 10
  const newNum = yield num
  yield 5 + newNum
  yield 6
}

const returnNextElement = createFlow()
const element1 = returnNextElement.next() // 10
const element2 = returnNextElement.next(2) // 7

We end up with a ‘stream’/flow of values that we can get 
one-by-one by running returnNextElement.next()



And most importantly, for the first time we get 
to pause (‘suspend’) a function being run and 
then return to it by calling 
returnNextElement.next()

In asynchronous javascript we want to

1. Initiate a task that takes a long time (e.g. requesting data from 
the server)

2. Move on to more synchronous regular code in the meantime

3. Run some functionality once the requested data has come back

What if we were to yield out of the function at the moment of 
sending off the long-time task and return to the function only 
when the task is complete



We can use the ability to pause createFlow’s 
running and then restart it only when our data 
returns

function doWhenDataReceived (value){
  returnNextElement.next(value)
}

function* createFlow(){
  const data = yield fetch('http://twitter.com/will/tweets/1')
  console.log(data)
}

const returnNextElement = createFlow()
const futureData = returnNextElement.next()

futureData.value.then(doWhenDataReceived)

We get to control when we return back to createFlow and continue 
executing - by setting up the trigger to do so 
(returnNextElement.next()) to be run by our function that 
was triggered by the promise resolution (when the value returned 
from twitter)



Async/await simplifies all this and finally fixes 
the inversion of control problem of callbacks

async function createFlow(){
  console.log("Me first")
  const data = await fetch('https://twitter.com/will/tweets/1')
  console.log(data)
}

createFlow()

console.log("Me second")

No need for a triggered function on the promise 
resolution, instead we auto trigger the resumption 
of the createFlow execution (this functionality 
is still added to the microtask queue though)



The Hard Parts Challenge Code

— Guarantees interview for the Codesmith 
Residency

— 90% of accepted students attend JSHP

— We created the Hard Parts Challenge code 
to guarantee an interview for the Hard 
Parts community members 

— It builds upon the iterators content you 
worked on today

— Drinks now !"#



Appendix



JavaScript gives us for...of which runs 
returnNextElement() until it runs out of 
elements

for...of automatically

— creates a returnNextElement function (all arrays have a 
createFunction built in to produce returnNextElement function)

— calls the returnNextElement function and stores the returned 
element in element to be used by us directly in the body of the for 
loop

const numbers = [4,5,6]

for (let element of numbers){
  console.log(element)
}


