So, you want to build your
own programming language.

Steve Kinney

Hi, I'm Steve.
(@stevekinney)

2 SendGrid

The Good News: As long as you rein In
your ambitions, creating your own
language 1s suspiciously easy.

The evaluator, which determines the meaning of
expressions In a programming language, Is just another
program. — Hal Abelson and Gerald Sussman, Structure
and Interpretation of Computer Programs

Why might you want to do
any of this?

You might not want to write your own
programming language, but there are elements
that are super practical for production code.

Use Cases

* Domain-specific languages: Terraform, Gemfiles.

* Templating languages: Handlebars, Jade (Er, Pug). This is my
use case right now.

e (You have a twisted idea of “fun.”)

Meta point: You can use individual pieces
of this talk in your day-to-day work
without having to build an entire language.

How do we uses these tools at Twilio SendGrid?

e Our drag-and-drop editor takes HTML, parses It into an
abstract syntax tree (AST) and manipulates it before serializing
It back into HTML.

e We're working on our own bespoke templating language for
dynamic email templates.

* We can sync your position in our side-by-side editor by
breaking HTML into an AST and rewriting the elements with
Information about their position in the text editor.

My goal Is that you should be able
to take pieces of this workshop as
Inspiration.

So, what even is a compiler?

Answer: Something that turns a
higher-level language Iinto a lower-
level language®.

Most of us do not write CPU
Instructions by hand. Most of us do
not write Assembly.

Source code Is meant to be
human readable.

St+++++++++[<+ ++++++>— | < OH [<HHH+>— | < A+ L L[-]
S++++++++ [<++++>—] <. OH+++++H+H+HHH+H[<H > - ————- e
S —————- m——————— -] [<= <L [-]+,

What are we building today?

(add 1 2 (subtract 6 3))

Tasting Notes

 We're going to build a Lisp-like language.

e We're going to leverage the existing JavaScript run-time.

The beauty of Scheme is that the full language only needs
5 Reywords and 8 syntactic forms. In comparison, Python
has 33 Reywords and 110 syntactic forms, and Java has 50
keywords and 133 syntactic forms. — Peter Norvig

Inspiration

e Peter Norvig's Lispy (a Lisp written in Python)

e Eloquent JavaScript, Chapter 12: The Egg programming
language.

e Jamie Kyle's Super Tiny Compiler.

https://norvig.com/lispy.html
https://eloquentjavascript.net/12_language.html
https://eloquentjavascript.net/12_language.html
https://github.com/jamiebuilds/the-super-tiny-compiler

The Stages of a Compiler

* Parsing: Take the source code and turn it into a representation
of that code. (I am going to make believe this is two stages in a

bit.)

* Transformation: Take that source code and transforms it to do
whatever the compiler wants it to do.

* Generation: Take the transformed representation and turns it
Into a new string of code.

Let’s start with parsing...

This is kind of two steps rolled into one.

e Lexical analysis
e Syntactic analysis

 (Psychoanalysis)

Lexing

(This is how cool kids say
“lexical analysis.”)

Basically: Take the big string
of code and turn 1t into tokens.

A token 1s a small unit of the
language.

How might a lexer work?

Accept an input string of code.

Create a variable for tracking our position, like a cursor.

Make an array of tokens.

Write a while loop that iterates through the source code input.
Check each token. See If it matches one of your types.

Add It to the array of tokens.

First, let’'s create some
helpers.

Exercise

e Parsing code is gnarly. Let’s try to make 1t a little bit less gnarly
by creating some helpers.

 In exercise-1.test.Js, there are some tests for helpers for
helping us to identify each type of token.

* Your job: Un-skip the tests and write some simple functions
that get each of the tests passing.

const isWhitespace = character = /\s/.test(character);

const isNumber = character = /[0-9]/.test(character);

const isOperator = character = /[\+\-*\/]/.test(character);
// More 1identifiers here..

How do we break apart this string
of text into an array of tokens?

const tokenize
let cursor =
const tokens

(input) = {

!

NE

i © |

while (cursor < input.length) {
// Our logic goes here..

)

return tokens;

&

Quick disclaimer: Our first attempt at
tokenization iIs going to be too simple.

if (isOperator(character)) {
tokens.push(character);

CUrsor++:;
continue;

)

if (isNumber(character)) {
tokens.push(character);

CUrsor++:;
continue;

)

1f (isWhitespace(character)) 1
CUYrSOr++ ;
continue;

)

Exercise

Let’s write a tokenize function that will iterate through the
Input string and return an array of tokens.

Right now, we’ll just worry about identifying single digits,
operators, and parenthesis.

It should skip over any whitespace that 1t finds.

This has a flaw.

22 + 23

Solution: For numbers, identifiers, and
strings, we need to collect multiple
characters into a single token.

if (isNumber(character)) {
let value = character;

while (isNumber(input[++cursor])) {
value += 1input[cursor];

}

tokens.push(value);

continue;

}

Exercise

« When we come across a letter or number, check to see If the
next character is a number too.

e If so, add i1t to the token.

e If not, move along.

22 + 23

|22|’

I23I

This I1s what we have so far.

['('I 'addll 4 ? ')']

Some thoughts to ponder...

Do we even need those parentheses?

 What do we do about nested expressions?

(add 1 2 (subtract 6 3))

Parsing |

Part 1: Basic Processing

How would we go from tokens to expressions?

* |f we see an opening parenthesis, start an expression.

e |[fyou see a closing parenthesis, we're done with this
expression.

 |f you're in the middle of an expression and you see another
opening parenthesis, you've got another expression.

e Ditch the parentheses, we don’'t need them anymore.

Exercise

 Create a processTokens() function.
e Start pulling from the front of the array of tokens.

« When you seen an opening parenthesis, start a new expression
array.

e Put tokens into that array until you come across the closing
parenthesis.

e Bonus: Recursively descend into nested pairs of parentheses.

Evaluation
Let’s build a REPL together.

What is a REPL?

It's a read-evaluate-print
loop. REPL.

/o~

16:27 $ node

> 2 + 2

A

> x = "Hello World"
'"Hello World'

> X

'Hello World'

> X + '

'"Hello World!'

> |

Not so fast...

 We're been using functions like add and subtract, but what do
those mean?

e Above and beyond having a syntax, most languages have some
amount of a standard library of built-in functions, objects, and
methods.

e We're leveraging JavaScript’s built-in numbers and arrays, but
we're going to need some functions too.

The Standard Library

e Since JavaScript is our compile target, we'll implement our
built-in functions as JavaScript functions.

Exercise

 We need to at least start with the following functions: add,
subtract, multiply, divide, and modulo.

e Because this is a Lisp, these functions should be able to take
more than two arguments.

Parsing

(A.k.a. “syntactic analysis.”)

Okay, so you've broken 1t into tokens, next
you need to figure out how arrange those
tokens in a way that means something.

Syntactic analysis: turn the tokens
Into an Intermediate representation or
abstract syntax tree.

AST Explorer 1s your bud.

http://bit.ly/ast-fun

http://bit.ly/ast-fun

var X =

®®® [} data:image/svg+xml,<svg xmlr X +

- 0

C' @® Not Secure | data:image/svg+xml,<svg%20xmins%3D"http%3A%2F%2Fwww.w3.0rg%2F2000%2Fsvg"%20xmIns%3Axlink%3D"http%3A%2F%2FWww.w3.... Yt ® & XU Q

Program

VariableDeclaration

VariableDeclarator

console.log(‘hello’);

000 [data:image/svg+xml,<svg xmlr X +

C' @ Not Secure | data:image/svg+xml,<svg%20xmins%3D"http%3A%2F%2FwWww.w3.0rg%2F2000%2Fsvg"%20xmIns%3Axlink%3D"http%3A%2F%2FWwww.w3.... ¥t ® & XU Q

Program

ExpressionStateme
nt

CallExpression

MemberExpression

function (a, b) { return a + b; }

000 [data:image/svg+xml,<svg xmlr X +

C ® Not Secure | data:image/svg+xml,<svg%20xmins%3D"http%3A%2F%2Fwww.w3.0rg%2F2000%2Fsvg"%20xmIns%3Axlink%3D"http%3A%2F%2FWww.w3.... X O & X Q

Program

function add(a,b)

BlockStatement

ReturnStatement

®e® Q estree/estree: The ESTree Spe X +

& C' & GitHub, Inc. [US] | https://github.com/estree/estree % @

5]
»
9]

The ESTree Spec

Once upon a time, an unsuspecting Mozilla engineer created an API in Firefox that exposed the SpiderMonkey engine's
JavaScript parser as a JavaScript API. Said engineer documented the format it produced, and this format caught on as a
lingua franca for tools that manipulate JavaScript source code.

Meanwhile JavaScript is evolving, notably with the upcoming release of ES2015. This site will serve as a community
standard for people involved in building and using these tools to help evolve this format to keep up with the evolution of the
JavaScript language.

Discussion

We've started the process of bringing together various communities using this format to move it forward into the ES2015
era and beyond. Feel free to join us! We'll be discussing in the issue tracker and in #esprima on Freenode.

AST Descriptor Syntax

The spec uses a custom syntax to describe its structures. For example, at the time of writing, 'es2015.md' contained a
description of Program as seen below

extend interface Program {
sourceType: "script" | "module";
body: [Statement | ModuleDeclaration 1;

Participating Members

How might we build an AST?

* |terate through the array of tokens.

e For each number, string, etc., add that token to same level of
the tree.

» For each CallExpression (e.g. function) collect the parameters
and then recurse down into the function body.

(tokens) = {
0;

const walk = () = {
let token = tokens|[cursor];
// Do stuff with your tokens here..

)

const parser
Llet cursor

)

1f (token.type == 'Number') {
current++;
return {
type: 'NumberLiteral’,
value: token.value,
!
}

while (

(token.type == 'paren') |
(token.type == 'paren' &5 token.value == ')')
) 1

node.params.push(walk());
token = tokens[current];

}

PSA: ASTs aren’t just for
programming languages.

A word or two on parser
generators.

Somewhat more controversial, | wouldn’t bother wasting time with
lexer or parser generators and other so-called “compiler compilers.”

They're a waste of time. Writing a lexer and parser is a tiny
percentage of the job of writing a compiler. Using a generator will
take up about as much time as writing one by hand, and it will marry
you to the generator (which matters when porting the compiler to a
new platform). And generators also have the unfortunate reputation

of emitting lousy error messages. — Walter Bright.

Transformation

(More than meets the eye.)

Breaking apart our source code into an internal
representation Is cool and everything, but we
theoretically did all of this work in order to
create some kind of output, right?

TL;DR: Manipulate the AST
and do your thing.

The Visitor Pattern

b

Design Patterns

Elements of Reusable
Object-Oriented Software

Frich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover art © 1994 M.C. Escher / Cordon Art - Baarn - Holland. All rights reserve

>
-,
O
W
O
-
=
M
W
=
m
)
&\,
L)
@
=
m
W
co
@,
Z
>
=
@
O
=
=9,
G
=
Z
@
o)
m
P,
—.
WD

Foreword by Grady Booch

Client

=

Element

accept(visitor)

£\

visitor.

ElementB

acceptivisitor)
operationB()

ElementA

vistor
—

Visitor

visitElementAfe)
visitElementBie)

vistElementA (this),

£\

accept(visitor)
operationAll

T

T

Visitor]

vistElementAle)
vistElementBi(e)

Clent

ElementA ‘ElementB

acceptivisitor)

P - ——— .

vistor
Msitor]

[
I
lyistElementA (this)

operationAll '

fo=

I
I
I
I

I

accept(visitor)

I
|
I
I
I
I
I
|

operationBl)

isitEle tB(thi
vis mentB| tS].’

P ——— -

By Vanderjoe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63201110

Basically, we do a depth-first
search through our tree.

The Visitor Pattern™ allows us define
different types of actions for each
node visited as 1t walks the tree.

import traverse from 'gbabel/traverse’;

traverse(ast, {

enter(patt
if (patl

path.n

}
b
});

)

.node.type

ode.kind

== 'VarilableDeclaration' && path.node.kind
'let’;

'var') {

® ® ® B wmarketing Campaigns x 4

& C @ https://mc.sendgrid.com/automations/1b718980-c32f-11e8-acee-563f3b3fddf0/detail/messages/3/editor/196358d0-848a-415e-989c-c6e011e43ab6 w O &

»/ DESIGN

TEXT MODULE STYLES X

= = = B /7 U ¢

Text Style

Normal v

Font

Arial v
-
O

Font Size 16 pX S
0
e
()
()

Line Height 22 pX T
it

Text Color C AUTO

Background Color C AUTO

Padding ™ 18px 1 Opx E18px [Opx

HTML AST H ML

Runtime Model

(A Brief Interlude of Hand-
Waving)

How we represent objects, methods,
types, methods and structure In
memory.

In this course, we're totally cheating
because we're transpiling to another
language that 1s going to handle all of that.

How IS JavaScript compiled?
Let's take a look at what V8 does.

O —] —
| >Z s
‘/“f
A$‘T }2

|

R
QY Te cooc

|O
L Qo @l Q0
!

Generation
(Or, parsing in reverse.)

Code Generation Options

Write your own low-level CPU-instruction compiler. (This is
probably a terrible idea.)

Use a compiler framework like LLVM.
Target the JVM.

Transpile (because it's 2019).

If you can get yourself to a Babel-compliant
AST, then you can use a tool off the shelf,
otherwise, you'll have to do It yourself.

generate ;

generate(ast, options, code);

Some Other Bonus Terms

(That | couldn’t find a non-
awkward way to include.)

Homoiconicity: A language that can
modify its own underlying data
structure.

Self-Hosting: The language is
written in the language Itself.

Questions?

