
FUNCTIONAL-LIGHT JS
KYLE SIMPSON GETIFY@GMAIL.COM

github.com/getify/Functional-Light-JS

https://github.com/getify/Functional-Light-JS

WHY FP?

IMPERATIVE 
VS 

DECLARATIVE

PROVABLE

LESS TO READ

Course Overview
• Functions
• Closure
• Composition
• Immutability
• Recursion
• Lists / Data Structures
• Async
• FP Libraries

...but before we begin...

FUNCTIONS

Procedures

Functions

Function: the semantic relationship
between input and computed output

SIDE EFFECTS

Avoid side effects with
function calls...

if possible

Side Effects:
• I / O (console, files, etc)
• Database Storage
• Network Calls
• DOM
• Timestamps
• Random Numbers
• CPU Heat
• CPU Time Delay
• etc

No such thing as 
"no side effects"

Avoid them where possible,
make them obvious otherwise

PURE FUNCTIONS

Function Purity:
Level of Confidence

Function Purity:
Calls, Not Definitions

EXTRACTING IMPURITY

CONTAINING IMPURITY

1.
2.
3.
4.
5.
6.

ARGUMENTS

unspread(..)?

POINT-FREE

Equational Reasoning

Shape

Advanced Point-Free

CLOSURE

Closure is when a function
"remembers" the variables around

it even when that function is
executed elsewhere.

LAZY VS EAGER

Memoization

GENERALIZED 
TO SPECIALIZED

Function Parameter Order:
General -> Specific

PARTIAL APPLICATION

CURRYING

Partial Application vs Currying:
1. Both are specialization techniques
2. Partial Application presets some arguments

now, receives the rest on the next call
3. Currying doesn't preset any arguments,

receives each argument one at a time

Specialization Adapts Shape

COMPOSITION

(RIGHT-TO-LEFT)

COMPOSE: RIGHT-TO-LEFT
PIPE: LEFT-TO-RIGHT

ASSOCIATIVITY

CURRYING REVISITED

POINT-FREE REVISITED

IMMUTABILITY

ASSIGNMENT
IMMUTABILITY

VALUE 
IMMUTABILITY

Read-Only Data Structures:
Data structures that never

need to be mutated

Treat all data structures as
read-only whether they are

or not

IMMUTABLE DATA
STRUCTURES

facebook.github.io/immutable-js

http://facebook.github.io/immutable-js

Immutable Data Structures:
Data structures that need to

be mutated

RECURSION

PTC
PROPER TAIL CALLS

CPS

TRAMPOLINES

LISTS
actually, data structures

MAP: TRANSFORMATION

FILTER: EXCLUSION
ACTUALLY, INCLUSION?

REDUCE: COMBINING

COMPOSITION  
REVISITED

FUSION

TRANSDUCING

DERIVING 
TRANSDUCTION

DATA STRUCTURE  
OPERATIONS

MONAD: 
FP DATA STRUCTURE

Monad: a monoid in the category of
endofunctors

Monad: a pattern for pairing data with a
set of predictable behaviors that let it

interact with other data+behavior
pairings (monads)

Monad: a monoid in the category of
endofunctors

There are many kinds of monads:
Just, Nothing, Maybe, Either, IO, etc

Should you use monads?
Maybe.

ASYNC

SYNCHRONOUS, EAGER FP

LAZY FP,
OVER TIME?

"LAZYARRAY" 
≅  

OBSERVABLE

FP LIBRARIES

LODASH/FP
github.com/lodash/lodash/wiki/FP-Guide

https://github.com/lodash/lodash/wiki/FP-Guide
https://ramdajs.com

RAMDA
ramdajs.com

https://ramdajs.com

github.com/getify/fpo

https://github.com/getify/fpo

RECAP:
‣ Functions (side effects, point-free)

‣ Closure

‣ Composition

‣ Immutability

‣ Recursion

‣ Lists & Data Structures

‣ Async (observables)

FUNCTIONAL-LIGHT JS
KYLE SIMPSON GETIFY@GMAIL.COM

THANKS!!!!

